

(JOIREM)

Volume: 10 Issue: 05 | May-2024

DIABETICS PREDICTIONS

Arivazhagan, Malini

¹MCA &Adhiyamaan college of engineering ***------

Abstract - Predicting the progression and potential complications of diabetes, known as "diabectis" in your query, is a crucial endeavor. Diabectis, presumably a variation or misspelling of diabetes, is a chronic condition characterized by elevated blood sugar levels due to either insufficient insulin production or ineffective use of insulin by the body. Abstracts in medical literature often offer condensed insights into studies, including predictions related to disease management might outline the current landscape of diabectis research, summarizing prevailing theories and recent findings regarding its pathogenesis, risk factors, and complications. It may highlight the importance of predictive models in understanding disease progression and identifying individuals at higher risk for adverse outcomes. This section could briefly touch upon the diverse manifestations of diabectis, sutype 1, type 2, and gestational diabetes predictive factors and models utilized in diabectis research.

Keywords: forecasting, prognosis, retinopathy, burden

1. COLLECTION OF DATASET

By collecting a diverse dataset encompassing these parameters from a population, machine learning algorithms can be trained to predict the likelihood of an individual For instance, researchers might collect data from thousands of individuals, recording their age, weight, height, blood sugar levels, blood pressure readings, and whether they have a family history of diabetes.

2. DATA SET

The dataset for predicting diabetes typically comprises a diverse range of individual information, including age, gender, body mass index (BMI), glucose levels, blood pressure readings, and family history of diabetes. Each entry in the dataset represents data collected from a single individual. For instance, it may include details such as the age of the person, their gender, BMI calculated from their weight plasma and height, fasting glucose concentration, and systolic and diastolic blood pressure measurements. Additionally, the dataset would note whether the individual has a family history of diabetes and whether they have been diagnosed with diabetes. This dataset serves as the foundation for training machine learning algorithms.

Table -1: Sample Table format

	\$178		- 1	⊇ fx												
.4	в	с	D	E		G	н	1	1	κ	L	M	N	0	P	
1	glucose_cod	iastolic_t	thickness	insulin	bmi	diab_pred	age	skin	diabetes							
2	148	72	35	c	33.6	0.627	50	1.379	TRUE							
3	85	66	29	C	26.6	0.351	33	1.1426	FALSE							
4	183	64	0	0	23.3	0.672	31	0	TRUE							
5	89	66	23	94	28.1	0.167	23	0.9062	FALSE							
6	137	40	35	168	43.1	2.288	33	1.379	TRUE							
7	116	74	0	C	25.6	0.201	30	0	FALSE							
8	78	50	32	88	31	0.248	26	1.2608	TRUE							
9	115	0	0	0	35.3	0.134	25	0	FALSE							
10	197	70	45	543	30.5	0.158	53	1.773	TRUE							
11	125	96	0	0	0 0	0.232	54	0	TRUE							
12	110	92	0	c	37.6	0.191	30	0	FALSE							
13	168	74	0	C	38	0.537	34	0	TRUE							
14	139	80	0	C	27.1	1.441	57	0	FALSE							
15	189	60	23	840	30.1	0.398	59	0.9062	TRUE							
16	166	72	19	175	25.8	0.587	51	0.7486	TRUE							
17	100	0	0	0	30	0.484	32	. 0	TRUE							
18	118	84	47	230	45.8	0.551	31	1.8518	TRUE							
19	107	74	0	0	29.6	0.254	31	0	TRUE							
20	103	30	38	83	43.3	0.183	33	1.4972	FALSE							
21	115	70	30	96	34.6	0.529	31	1.182	TRUE							
22	126	88	41	235	39.3	0.704	27	1.6154	FALSE							
23	99	84	0	0	35.4	0.388	50	0	FALSE							
24	196	90	0	0	39.8	0.451	41	0	TRUE							
25	119	80	35	0	29	0.263	25	1.379	TRUE							
26	143	94	33	146	36.6	0.254	51	1.3002	TRUE							
27	125	70	26	115	31.1	0.205	41	1.0244	TRUE							
85	147	76	0	0	39.4	0.257	43	0	TRUE							
29	97	66	15	140	23.2	0.487	21	0.591	FALSE							
90	145	82	19	110	22.2	0.245	57	0.7486	FALSE							
51	117	92	0	0	34.1	0.337	38	0	FALSE							
32	109	75	26	0	36	0.546	66	1 0244	FAISE							

Datasets for diabetic prediction involves anticipation of evolving healthcare data landscapes and technological advancements. With the increasing digitization of healthcare records and the adoption of IoT devices, future

Volume: 10 Issue: 05 | May-2024

datasets may encompass a broader array of patient information.

Figure: Collection of Data

Fig -1: Figure

TABLES

Col	Col	Col	Col	Col
Name	Name	Name	Name	Name
age	dob	bmi	bp	range
45	1981	3	125	9

3. CONCLUSIONS

In conclusion, the development of a new dataset for diabetic prediction represents a transformative opportunity to advance healthcare by leveraging emerging technologies and comprehensive data integration. By incorporating diverse data sources, including clinical records, wearable devices, genetic information, and lifestyle metrics, alongside cuttingedge analytics techniques, healthcare practitioners can gain deeper insights into the complex factors influencing diabetes onset and progression.

ACKNOWLEDGEMENT

This journal paper was truly prepared by my itself I agree the terms and conditions.

REFERENCES

1.<u>https://www.javatpoint.com/machine-</u> learning-algorithms 2.<u>https://iopscience.iop.org/article/10.1088</u> /1742-6596/1916/1/012092

3.<u>https://www.tutorialspoint.com/big_data</u> analytics/machine_learning_data_analysis. <u>htm</u>

4.<u>https://cse.anits.edu.in/projects/projects</u> 2021C3.pdf