
Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 1

AI In Modern Software Development: Current Practices, Challenges and Future
Possibilities .

Sunil Medepalli

IBM
---***---
Abstract - Artificial Intelligence is fast emerging as an
inseparable part of software engineering. Its impact on
modern software development is significantly high.
Though writing code or to be more precise, generating
code through AI systems and tools facilitates the
development of a wide variety of products, there are
ethical considerations, risks, and limitations that
ultimately affect the overall quality of the software. This
research paper highlights how AI is used in modern
software design, development, testing, security, and
management processes and they are flawlessly
streamlined for enhanced productivity and quality. The
research describes how AI is important in software
engineering as firms without employing AI in SDLC are
susceptible to underperforming. It provides insights into,
what it could help with in terms of developing modern
and scalable applications, and the ethics involved in AI-
driven software engineering. It also highlights
limitations underlying the applications of AI in the past,
present, and future.

1.INTRODUCTION

Software Development is rapidly changing,
growing in strength with the power of new
technologies. Earlier, it was hard for anyone to
imagine a bot could be capable enough of
simplifying human tasks (Hernández-Ledesma et
al., 2017). No doubt, the modern world is software-
obsessed, running various types of software and
programs that make work more efficient and
reliable (Farley, D., 2021). Seemann (2021) states
that the primary goal of software engineering is to
develop a more reliable, efficient and user-friendly
system. Whether it is a small application or a big
application, it must address the goals. Different
technologies from time to time have successfully
been implemented, and have greatly influenced the
way the imaginations are programmed (Pantiuchina
et al., 2017). Indeed, technologies such as cloud
computing, data science, blockchain, the Internet of

Things, and others have significantly influenced
software engineering in various ways. However,
still, the role of experimental AI is more vital. It has
ushered the software industry into a new phase of
“anything possible” where any ideas could easily be
turned into a solution.

Artificial Intelligence is now widely used by
corporate, and small and big companies in
simplifying their software development processes.
It enables developers to overcome a plethora of
problems in core areas of coding, code refinement,
automation, code optimization, debugging,
deployment, and project management (Barenkamp
et al., 2020). ML, an AI’s subset helps analyze
large sets of data and information from previous
projects. The predictive analytics guide teams in
making well-informed and insightful decisions to
further improve their current or ongoing projects.
NLP (Natural Language Processing) is a key to
building more meaningful interactions. A wide
range of code development tools streamline team
collaboration and improve efficiency and
transparency in project management (Amershi et
al., 2020). Apart from this, Marar (2024) explains
how AI as a tool is more powerful when it comes to
CI/CD (continuous integration and continuous
development). Shneiderman (2020) describes how
identifying small and big changes in code at any
stage like designing, development, testing or
security has always been more crucial and how AI
makes it easier with minimal or even without
human intervention. Adopting AI strategies,
developers can take on agile methodologies to
swiftly respond to market requirements and deliver
more intuitive and robust products.

Software Engineering Evolution

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 2

Software history is certainly amazing from the first
program designed by Ada Lovelace in the mid-19th
century to the birth of ENIAC (Electronic
Numerical Integrator and Computer) programming
in the 1940s. Though it moved through various
evolutionary phases, it reached new levels of
possibilities with the introduction of AI in the mid-
20th century. Early AI-based systems were good at
performing a wide range of tasks in problem-
solving and logical reasoning (Philipson, 2004). AI
techniques continued to evolve since then. The use
of symbolic reasoning and heuristic search became
a little practical. ELIZA an AI program, a natural
language processing program could be an example
of its growing influence then. Mijwel (2015)
explained how with the development of programs
that could show human-like intelligence in the
1980s (an example of it could be MYCIN) new
milestones in AI in software engineering were
reached. Currently, popular techniques such as
neural networks facilitate the process of software
testing and development process optimization. The
real impact of AI surfaced when AI was preferred
as a technology to generate code for small and big
software programs. Bot-driven, AI-powered coding,
debugging, application security, testing,
monitoring, and management are now common.
But, yes, all these have certain limitations. Some
problems and challenges exist and they largely
impact the development of worthier, more user-
friendly, and business-friendly applications (Vaidya
et al., 2023).

SDLC and Automation Possibilities

Software engineering involves a large number of
tasks. De Silva et al. (2022) described the
complexities involved in different phases in the
Software Development Lifecycle (SDLC) and how
each of these phases will have small goals. Liu, et
al., (2020) stress on importance of AI applications
or approaches which are known to be more

beneficial in terms of developing smart solutions
within less time. The use of AI in software
engineering increased over the past two decades. It
is now a technique commonly employed in
designing, building, and testing various software
components with ease. This in turn enables a
smooth development process. But, still, there is also
a supposed gap between the research in AI
applications and the actual implementation of AI in
the software programming processes.

Generating, Analyzing, and Revamping Code:
Synching AI with Human Intelligence for Better
Results

Creating the required code as per the project goals
is one big thing for all developers. Ideas are turned
into real applications only with proper coding. If it
goes wrong, the entire application goes wrong. But,
writing the code is now a thing of the past. We use
the term “code generation” as these are AI tools
that help with creating the right code snippets. Now
tools come with the power of AI, trained on a large
set of programs, code structures, architecture,
designs, and patterns which also seem to have the
potential to solve even complex problems (Kulkarni
et al., 2017). Human-like intelligence was limited in
the past but AI technology made it all possible for
systems and machines to think and act like humans
and generate code at speed. Analyzing the context,
the programs now generate code snippets that
depict the developers’ and the stakeholders’
thoughts.

No doubt, it is the power of NLP (natural language
processing) that has made this task much simpler
since it allows the users to drape their thoughts with
the real code, as they could provide instructions in
plain language to get the right or the preferred
output. By describing code requirements in natural
language, coders can simplify their task of coding.
For instance, developing a more secured and
scalable REST API endpoint to extract, define, and

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 3

refine the user data is now made simple with
instructions given to the AI-code generation tool.
Similarly, getting suggestions, and
recommendations on the next block of code or to
put it simply, code completion support increases
productivity greatly. For instance, systems trained
in Python, Java, and other coding languages
provide developers with suggestions or what could
be the next line of code taking into account the
context. Earlier, coders do not have such an option.
They were supposed to write at length what they
needed to build functional components of the
software without real-time support. But, now with
AI, it has become possible. Now, many
programming platforms have implemented AI
intending to support developers in developing the
code they need with suggestions and
recommendations (Padmanaba et al., 2019).

AI Assistants: Convenience vs. Risks

According to Liang et al. (2024), there has been a
great increase in dependence on AI assistants. A
quantitative study on software development
practices and the use of AI assistants such as
GitHub Copilot and OpenAI's ChatGPT and other
similar tools that provide transformative insights
indicates how developers prefer to consult one of
such tools to code programs and how such tools
also help increase efficiency, quality, and
productivity. It is a well-known fact that AI tools
are a little biased in producing code that could be
insecure too as tools are trained without much due
attention to the sources. The sources for the data
could be verified or unverified. Therefore, there is a
high risk of code going wrong, which might disrupt
the work of a developer who depends entirely on
the AI output for the code. Apart from this, research
conducted by Pinto et al. (2024) demonstrate how
concerns are prevailing in areas of plagiarism and
copyright as the code generated by such tools could
match the existing pieces of code or copyrighted
programs. Apart from this limitations in the

accuracy and correctness of such code snippets are
also one of the biggest issues.

AI's capabilities to identify and analyze patterns
and deliver more powerful predictions enable a
team of developers to overcome barriers in
development, reduce or overcome inconsistencies
or errors, and ultimately improve deployment and
delivery. It is worth mentioning that developers
save time and allocate more time to brainstorming
and innovation by doing away with repetitive tasks
(Maninger et al., 2024). Technology firms relying
on AI tools for coding and code generation also
gain competitive advantages as their teams become
much smarter with AI assistance and begin to
produce code at a great speed which helps complete
projects on time. One of the key aspects of an AI-
driven environment of coding is that it enhances
team collaboration, brings different teams from
different platforms to one single and unified
platform where all the team members, leaders, and
decision-makers can find it easy to code in
collaboration, and develop various components of
the software without compromising on quality. This
collaborative approach not only reduces the time
needed for the development of the product but also
makes the product more powerful. Research also
showed that AI and Human collaboration yield
better results. AI-generated code could create
problems if it is not paired with human intelligence.
Refining, validating, and rewriting it to fit the
purpose is crucial. Research emphasizes the
importance of humanized systems which ultimately
help with enhancing software productivity and
reliability (Perry, et al., 2023).

Testing With AI

AI now plays a critical role in testing. Software
developers find it easy to generate and execute a
wide variety of tests, which help identify bugs. AI
algorithms are employed to effectively overcome
challenges that largely impact the overall software

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 4

quality. Study conducted by Heusser and Larsen
(2023) show that with proper analysis, potential
vulnerabilities are weeded out. This in turn
enhances the testing lifecycle efficiency. It is
applied to enhance exploratory testing processes.
Similarly, it is employed to analyze the data, client
cases, and development patterns. Furthermore, AI-
trained systems and processes reduce the time
needed to heal the programs as they can
automatically detect the bugs and fix the systems.
Kasowaki and Akara (2023) describe AI-driven
systems as more adaptive as they can adapt to
ongoing software development processes too, and
suggest what is working and what is not. Apart
from this, AI synced with cloud technology allows
the users to scale systems up and down as required
with extensive modifications in codebases.

With the resurgence of AI in software development,
corporate firms prefer to employ AI Agents for
development. Companies employing AI systems to
develop different components of the software notice
a greater level of efficiency in all phases of SDLC.
Each AI agent will be responsible for carrying out
its process of design, coding, re-coding, fixing the
code, debugging, testing, and management. Though
it is considered risky, technological advances,
particularly in AI will make this vision more
achievable and this will further reduce the necessity
of hiring multiple employees for the task (Donvir et
al., 2024). Even if AI moves to this level, there will
be a need for human intervention as this will help
organizations ensure that the products are designed,
developed, and tested as per the standards and it is
ready for use or to make an impact (Korzeniowski
and Goczyła 2019).

Transformative Role of AI in Development:
Current Challenges and Possible Solutions

Though AI plays a transformative role in SLDC
there are challenges that it grapples with. AI models
are trained on huge datasets but still, poor-quality

data is one big problem that escapes attention of the
organizations. AI systems trained on non-verified
databases might produce unsuitable results.
Developers using such output might be at risk of
developing a system that doesn't align with the
project goals or at least it will disrupt the
development process or might increase the time for
production (Hossain Faruk et al., 2022).

Implementing AI in SDLC requires a considerably
greater initial investment. Enterprises might have to
bear the losses if it doesn't deliver the expected
results. According to Khaliq, Z et al. (2022)
technically complex would be the process of
integrating AI into legacy software development
systems. It is one big issue that hinders
organizations to experiment or innovate. Hence,
companies prefer to revert to their old systems or
methodologies of developing the software.
Furthermore, Fischer et al. (2022) stressed the
importance of developing AI models that could
sync perfectly well with the SDLC and other
integrated systems but creating such models would
need unparalleled expertise. A lack of technical
understanding of how AI could be implemented to
streamline the SDLC might stop organizations from
adopting it. Machine intelligence can't be superior
to human intelligence. Therefore, relying only on
the analyses generated through AI systems is never
recommended as such analytics might lead to unfair
results or might disrupt the process of development.

Leveraging AI’s Potential

AI systems are more vulnerable to attacks and they
could malfunction if they are fed with the wrong
data. The scalability of such systems is also one big
problem since it invites investment from time to
time to comply with modern development in this
field. Managing the systems also adds to the
increasing costs (Prather et al., 2024). Though there
are small and big challenges in implementing and
integrating AI into SDLC to achieve much better
results faster, they could be mitigated with proper
planning. Promoting AI literacy should be the first

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 5

step as knowledgeable employees with a sound
understanding of AI in SDLC can ultimately
outperform in development. Organizations should
focus on small projects first where they could use
the AI to discover its potential and the inherent
challenges and as they reach new milestones of
success they can move to bigger projects.
Furthermore, problems existing in core areas such
as communication, collaboration, and project
management can be resolved with the integration of
modern M2M (machine-to-machine) strategies.
Building such M2M APIs could be challenging but
it will have the potential to facilitate
communications greatly as the agent could interact
seamlessly. An agent developing the code will
share the code with the agent responsible for
analysis. As the code is analyzed it could be shared
with the agent responsible for debugging. AI
agents will work perfectly well when there is
human intervention. Though the AI agents will act
autonomously, a human agent responsible for the
management of the process will have a bigger
responsibility. There are bigger challenges in
developing such multi-agent platforms where these
AI-driven agents can take the task of developing the
software on their own. There can be challenges in
terms of defining the roles and objectives for every
agent. Designing AI architectures and developing
systems with different capabilities might pose
bigger challenges for the firms but with proper
planning, organizations could achieve these goals
and thus streamline their software development
processes. No doubt, combining the output of AI
with human intelligence should be prioritized as it
is the only way to generate flawless solutions.
Without human intervention, AI technology in
programming solutions might sound meaningless or
superficial. Updating the AI-driven systems should
be a top priority concern. Continual data training
will make the AI system more powerful and this
way it will generate the right output and software
development will be an error-free process.

3. CONCLUSIONS

Though AI has been in use for over two decades and has
successfully transformed the world of technology, it still
has a long way to go. With the development of more
modern super-intelligent systems, it could be possible to
automate software engineering or at least core activities
that fall within areas of design, recoding, reuse of code,

generating code snippets, deploying, testing, debugging,
and management. It is possible that shortly AI systems
integrating with software development technologies will
open new ways of autonomous coding. It will be
possible to generate completely error-free code with
descriptions in natural language. The developers will
have more time to resolve problems and innovate while
the AI systems will simplify small and big repetitive
tasks. Manual coding will be reduced to a greater extent.
Personalizing the software programs with AI is limited
now but training verified data systems will power the AI
systems greatly and AI systems could dynamically adapt
to software development processes and yield better
results. Apart from this, by reducing errors, saving time,
and improving the collaboration among teams, it will
continue to be the first choice for the SDLC
management.

REFERENCES

1. Hernández-Ledesma, G., Ramos, E. G., y
Fernández, C. A. F., Aguilar-Cisneros, J. R.,
Rosas-Sumano, J. J., & Morales-Ignacio, L. A.
(2017). Selection of Best Software Engineering
Practices: A Multi-Criteria Decision Making
Approach. Res. Comput. Sci., 136, 47-60.

2. Farley, D. (2021). Modern Software

Engineering: Doing What Works to Build Better
Software Faster. Netherlands: Pearson
Education.

3. Seemann, M. (2021). Code That Fits in Your

Head: Heuristics for Software Engineering.
United Kingdom: Pearson Education.

4. Pantiuchina, J., Mondini, M., Khanna, D.,

Wang, X., & Abrahamsson, P. (2017). Are
software startups applying agile practices? The
state of the practice from a large survey. In
Agile Processes in Software Engineering and
Extreme Programming: 18th International
Conference, XP 2017, Cologne, Germany, May
22-26, 2017, Proceedings 18 (pp. 167-183).
Springer International Publishing.

5. Barenkamp, M., Rebstadt, J., & Thomas, O.

(2020). Applications of AI in classical software
engineering. AI Perspectives, 2(1), 1.

6. Amershi, S., Begel, A., Bird, C., DeLine, R.,

Gall, H., Kamar, E., ... & Zimmermann, T.
(2019, May). Software engineering for machine

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 6

learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software
Engineering: Software Engineering in Practice
(ICSE-SEIP) (pp. 291-300). IEEE.

7. Marar, H. W. (2024). Advancements in software

engineering using AI. Computer Software and
Media Applications, 6(1), 3906.

8. Shneiderman, B. (2020). Bridging the gap

between ethics and practice: guidelines for
reliable, safe, and trustworthy human-centered
AI systems. ACM Transactions on Interactive
Intelligent Systems (TiiS), 10(4), 1-31.

9. Philipson, G. (2004). A short history of

software. In Management, Labour Process and
Software Development (pp. 13-44). Routledge.

10. Mijwel, M. M. (2015). History of Artificial

Intelligence Yapay Zekânın T arihi. Computer
Science,(April 2015), 3-4.

11. Vaidya, J., & Asif, H. (2023). A Critical Look at

AI-Generate Software: Coding with the New AI
Tools is Both Irresistible and Dangerous. Ieee
Spectrum, 60(7), 34-39.

12. De Silva, D., & Alahakoon, D. (2022). An

artificial intelligence life cycle: From
conception to production. Patterns, 3(6).

13. Liu, B., Li, G., Zhang, H., Jin, Y., Wang, Z., &

Shao, D. (2024). The Gap Between Trustworthy
AI Research and Trustworthy Software
Research: A Tertiary Study. ACM Computing
Surveys, 57(3), 1-40.

14. Kulkarni, R. H., & Padmanabham, P. (2017).

Integration of artificial intelligence activities in
software development processes and measuring
the effectiveness of integration. Iet Software,
11(1), 18-26.

15. Padmanaban, P. H., & Sharma, Y. K. (2019).

Implication of Artificial Intelligence in Software
Development Life Cycle: A state of the art
review. 2019 IJRRA all rights reserved.

16. Liang, J. T., Yang, C., & Myers, B. A. (2024,

February). A large-scale survey on the usability
of AI programming assistants: Successes and
challenges. In Proceedings of the 46th

IEEE/ACM International Conference on
Software Engineering (pp. 1-13).

17. Pinto, G., De Souza, C., Rocha, T., Steinmacher,

I., Souza, A., & Monteiro, E. (2024, April).
Developer Experiences with a Contextualized
AI Coding Assistant: Usability, Expectations,
and Outcomes. In Proceedings of the
IEEE/ACM 3rd International Conference on AI
Engineering-Software Engineering for AI (pp.
81-91).

18. Maninger, D., Narasimhan, K., & Mezini, M.

(2024, April). Towards Trustworthy AI
Software Development Assistance. In
Proceedings of the 2024 ACM/IEEE 44th
International Conference on Software
Engineering: New Ideas and Emerging Results
(pp. 112-116).

19. Perry, N., Srivastava, M., Kumar, D., & Boneh,

D. (2023, November). Do users write more
insecure code with AI assistants?. In
Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications
Security (pp. 2785-2799).

20. Heusser, M., & Larsen, M. (2023). Software

Testing Strategies: A testing guide for the
2020s. Packt Publishing Ltd.

21. Kasowaki, L., & Akara, N. (2023). Exploratory

Testing Strategies for Software Quality
Assurance (No. 11360). EasyChair.

22. Donvir, A., Panyam, S., Paliwal, G., & Gujar, P.

(2024, October). The Role of Generative AI
Tools in Application Development: A
Comprehensive Review of Current
Technologies and Practices. In 2024
International Conference on Engineering
Management of Communication and
Technology (EMCTECH) (pp. 1-9). IEEE.

23. Korzeniowski, Ł., & Goczyła, K. (2019).

Artificial intelligence for software development:
the present and the challenges for the future.
Biuletyn Wojskowej Akademii Technicznej,
68(1).

24. Hossain Faruk, M. J., Pournaghshband, H., &

Shahriar, H. (2022, October). AI-oriented
software engineering (AIOSE): challenges,
opportunities, and new directions. In

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 10 Issue: 01 | Jan-2025

© 2025, JOIREM |www.joirem.com| Page 7

International Conference on Software Process
Improvement (pp. 3-19). Cham: Springer
International Publishing.

25. Khaliq, Z., Farooq, S. U., & Khan, D. A. (2022).

Artificial intelligence in software testing:
Impact, problems, challenges and prospect.
arXiv preprint arXiv:2201.05371.

26. Fischer, L., Ehrlinger, L., Geist, V., Ramler, R.,

Sobiezky, F., Zellinger, W., ... & Moser, B.
(2020). Ai system engineering—key challenges
and lessons learned. Machine Learning and
Knowledge Extraction, 3(1), 56-83.

27. Prather, J., Reeves, B. N., Leinonen, J.,

MacNeil, S., Randrianasolo, A. S., Becker, B.
A., ... & Briggs, B. (2024, August). The
widening gap: The benefits and harms of
generative ai for novice programmers. In
Proceedings of the 2024 ACM Conference on
International Computing Education Research-
Volume 1 (pp. 469-486).

28. Santa Barletta, V., Cassano, F., Pagano, A., &

Piccinno, A. (2022, November). New
perspectives for cyber security in software
development: when end-user development
meets artificial intelligence. In 2022
International Conference on Innovation and
Intelligence for Informatics, Computing, and
Technologies (3ICT) (pp. 531-534). IEEE.

29. Artificial Intelligence Methods For Software

Engineering. (2021). Singapore: World
Scientific Publishing Company.

30. Lean and Agile Software Development: 6th

International Conference, LASD 2022, Virtual
Event, January 22, 2022, Proceedings. (2022).
Germany: Springer International Publishing.

31. Lee, K., Qiufan, C. (2021). AI 2041: Ten

Visions for Our Future. United States: Crown.

32. Artificial Intelligence Methods For Software
Engineering. (2021). Singapore: World
Scientific Publishing Company.

