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Abstract - Early detection of eye diseases are crucial for 
preventing vision loss and ensuring timely treatment. This 
paper explores the application of advanced deep learning 
techniques for the comprehensive detection of various eye 
diseases using retinal and Optical Coherence Tomography 
(OCT) imaging. The detection of eye diseases, particularly 
myopia, is an important healthcare challenge in Malaysia due 
to the increasing prevalence of vision-related disorders. This 
research focuses on developing an AI-driven solution to 
address this challenge, with the primary focus on detecting 
myopia. However, the system is also capable of identifying 
other conditions such as acrima, retinal diseases, origa, 
diabetic retinopathy, cataract, glaucoma and age-related 
macular degeneration. The study utilizes Convolutional 
Neural Networks, achieving a high accuracy of 97.87% for 
myopia detection. Fine-tuning was applied to a pre-trained 
CNN model, leveraging transfer learning to enhance the 
model's performance. By employing advanced deep learning 
architectures, this research enhances diagnostic accuracy and 
efficiency, providing a robust framework for the detection of a 
wide range of ocular diseases. The results highlight the 
potential of CNNs in revolutionizing eye care, emphasizing 
the role of AI in improving diagnostic capabilities and its 
integration with retinal and OCT imaging to ensure timely 
diagnosis and treatment. 
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1. INTRODUCTION 
 
Early detection of eye diseases is vital for preventing vision 
loss and ensuring timely intervention. With the increasing 
prevalence of vision-related disorders worldwide, effective 
detection methods are crucial for providing adequate care and 
reducing the burden of preventable blindness. Myopia, a 
refractive error that is rapidly increasing in global prevalence, 
is one of the most common eye conditions affecting millions, 
particularly in countries like Malaysia. The rising incidence of 
myopia, along with other ocular diseases such as diabetic 
retinopathy, cataract, glaucoma, and age-related macular 
degeneration (AMD), underscores the urgent need for 
advanced diagnostic tools to facilitate early detection and 
treatment. AI and machine learning technologies have been 
increasingly adopted across various sectors [1-7], showcasing 

substantial potential in medical imaging, diagnostic accuracy, 
and predictive analytics. These advancements hold particular 
promise for transforming the early detection and diagnosis of 
ocular diseases. 
 

Traditional methods of diagnosing eye diseases often 
rely on subjective assessments by ophthalmologists and 
manual interpretation of retinal images, which can be time-
consuming and prone to human error [8] [9]. However, the 
advent of advanced medical imaging techniques, such as 
Optical Coherence Tomography (OCT) and retinal imaging, 
has significantly improved the ability to visualize and detect 
eye conditions with high precision [10] [11]. These imaging 
modalities, combined with the power of artificial intelligence 
(AI) and deep learning, have the potential to revolutionize eye 
care by providing faster, more accurate, and automated 
diagnostic solutions. [12][14]. 
 

Deep learning, a subset of machine learning, has 
proven particularly effective in medical image analysis, 
particularly in the detection of eye diseases. Convolutional 
Neural Networks (CNNs), a type of deep learning 
architecture, have shown remarkable success in image 
classification tasks, making them ideal for analysing retinal 
and OCT images. CNNs excel at automatically learning 
relevant features from raw image data, bypassing the need for 
manual feature extraction and enabling the model to make 
accurate predictions based on complex patterns [8][9]. 
 

This research focuses on leveraging CNNs for the 
detection of myopia and other eye diseases, with a particular 
emphasis on enhancing diagnostic accuracy using fine-tuning 
and transfer learning techniques. By applying pre-trained 
models and adapting them to the specific task of ocular 
disease detection, this study aims to improve the efficiency 
and reliability of eye disease diagnosis. The primary goal is to 
develop an AI-driven system that can assist healthcare 
professionals in diagnosing myopia and other retinal 
conditions more accurately, efficiently, and at an earlier stage 
[7][8]. 
 

The datasets used in this study were sourced from the 
MSU Eye Centre in Malaysia, which provides a 
comprehensive set of retinal and OCT images. These images 
form the foundation for training the CNN model, enabling the 
system to detect various ocular conditions, including myopia, 
diabetic retinopathy, cataracts, glaucoma, and AMD. The 
integration of deep learning with medical imaging 
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technologies holds great promise for improving the accuracy 
and speed of detection of eye disease, potentially transforming 
the landscape of ophthalmic care. [9][10]. 
 

 
Fig - 1: Sample of OCT Eye Images 

 
This paper highlights the potential of deep learning 

techniques, specifically CNNs, in advancing eye disease 
detection. By focusing on the application of these 
technologies to myopia and other ocular diseases, the study 
aims to contribute to the growing body of research in AI-
driven healthcare and offer valuable insights into the role of 
machine learning in revolutionizing medical diagnostics. 

 

2. LITERATURE REVIEW 
2.1 Deep Learning in Eye Disease Detection 

The application of deep learning, particularly 
Convolutional Neural Networks (CNNs), has revolutionized 
the field of medical imaging, especially in the diagnosis of eye 
diseases. CNNs are a type of deep learning architecture that 
excel in tasks involving image recognition and classification 
due to their ability to automatically learn hierarchical features 
from raw data. In ophthalmology, CNNs have been 
increasingly utilized for the detection and classification of 
various retinal diseases. These include conditions such as 
diabetic retinopathy, age-related macular degeneration 
(AMD), glaucoma, and myopia. Their ability to learn complex 
patterns from large datasets and to process images directly 
without the need for manual feature extraction makes them 
highly effective for automated analysis [1][2]. 
 

CNN-based models have also been successful in 
addressing the issue of asymmetry in disease classification, 
where subtle differences in retinal structures across eyes can 
challenge traditional diagnostic methods. The success of these 
models highlights the transformative impact of deep learning 
on medical diagnostics, especially in settings with limited 
access to specialized medical professionals [8][10].  
 

Recent advancements have further enhanced the 
capabilities of CNNs in eye disease detection. For instance, 
[16] introduced an advanced deep learning model that 
integrates transfer learning and improved D-S evidence theory 
to enhance the accuracy of retinal disease recognition. This 
approach leverages pre-trained models and adapts them to 
specific medical imaging tasks, demonstrating significant 

improvements in diagnostic performance. Additionally, [17] 
conducted a comprehensive review of deep learning 
techniques for retinal disease detection, highlighting the latest 
trends and future directions in this rapidly evolving field. 
 
2.2 Myopia Detection Using AI 

Myopia, or near sightedness, is one of the most 
common refractive errors in the world. With increasing rates 
of myopia globally, especially in Asia, early detection and 
effective management are critical to prevent the progression to 
high myopia, which can lead to severe visual impairment and 
even blindness. AI, particularly CNNs, has shown great 
promise in detecting myopia from retinal images, enabling 
early diagnosis and timely intervention. 
 

Several studies have explored the use of deep 
learning models for myopia detection, using either retinal 
fundus images or Optical Coherence Tomography (OCT) 
scans. [12] developed a CNN model that could effectively 
distinguish between myopic and non-myopic retinal images, 
achieving accuracy that matched or exceeded the performance 
of human experts. Their research demonstrated that CNNs 
could be trained to detect myopia-related features in retinal 
images, which are often too subtle for manual detection. 
Similarly, [11] developed a deep learning-based system that 
used OCT images to predict the progression of myopia, 
demonstrating that AI can not only detect myopia but also 
forecast its development over time. This prediction capability 
is particularly useful for managing high myopia, which can 
result in complications such as retinal detachment, cataracts, 
and glaucoma. These studies indicate that deep learning 
methods offer a promising solution for managing myopia, 
particularly in countries like Malaysia, where myopia is 
becoming an increasingly significant public health issue. 
 

Further research by [18] has shown that multi-modal 
deep learning approaches, which combine fundus and OCT 
images, can significantly enhance the accuracy of myopia 
detection. This method provides a more comprehensive view 
of the retina, allowing for better identification of myopia-
related features. Additionally, [19] explored the use of 
ensemble learning techniques to improve the robustness of AI 
models in detecting myopia, demonstrating that combining 
multiple models can lead to more reliable diagnostic 
outcomes. 
 
2.3 Fine-Tuning and Transfer Learning in Medical 
Imaging 
 

The fine-tuning and transfer learning techniques have 
become indispensable in deep learning, especially when 
dealing with medical image classification tasks. These 
techniques are particularly useful in scenarios where labelled 
data is limited, which is often the case in medical imaging. 
Transfer learning involves adapting a pre-trained model, 
usually trained on a large dataset (such as ImageNet), to 
perform a specific task, such as detecting retinal diseases. 
Fine-tuning involves training the model further, adjusting its 
weights and biases, especially in the later layers, to better suit 
the task at hand. This approach leverages the general features 
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learned by the pre-trained model, such as edge detection or 
texture recognition, and applies them to a new, specialized 
domain like ophthalmology. 
 

Several studies have demonstrated the effectiveness 
of fine-tuning and transfer learning in improving the 
performance of CNN models for detecting eye diseases. [10] 
used a pre-trained CNN model for classifying fundus images 
of eye diseases, fine-tuning it to detect diabetic retinopathy. 
Their approach resulted in improved classification 
performance, as the pre-trained model had already learned 
basic features from a large dataset and was able to apply them 
effectively to the medical imaging task. Similarly, [11] fine-
tuned a CNN model for retinal disease detection, achieving 
higher classification accuracy than training a model from 
scratch. Fine-tuning is especially beneficial in medical image 
analysis because it reduces the need for large, annotated 
datasets and accelerates the training process. This technique is 
crucial for overcoming the challenge of data scarcity in 
medical domains, where acquiring labelled data is often 
expensive and time-consuming. 
 

Recent studies have further explored the potential of 
transfer learning in medical imaging. [20] demonstrated that 
transfer learning with pre-trained CNNs can significantly 
improve the classification accuracy of retinal disease detection 
models. Their research highlighted the importance of 
leveraging pre-trained models to overcome the limitations of 
small medical datasets. Additionally, [21] investigated the use 
of ensemble learning techniques in combination with transfer 
learning, showing that this approach can enhance the 
robustness and reliability of AI models in medical imaging. 
 
2.4 Challenges and Limitations in AI for Eye Disease 
Detection 
 

Despite the advancements in AI and deep learning 
for eye disease detection, several challenges remain that 
hinder their widespread implementation. One of the main 
issues is the scarcity of large, high-quality labelled datasets 
required for training deep learning models. In ophthalmology, 
annotated images from experts are essential to train models 
effectively, but such datasets are often limited and not readily 
available. The difficulty of obtaining high-quality annotated 
data, particularly for rare eye conditions or early-stage 
diseases, remains a significant barrier to the development of 
accurate AI models. [14]. 
 

Another challenge is the interpretability of AI 
models. While deep learning models, particularly CNNs, can 
achieve remarkable accuracy, understanding how they arrive 
at their decisions remains difficult. In medical applications, 
especially in fields like ophthalmology, clinicians need to trust 
the model's decision-making process to adopt AI systems in 
practice. The lack of transparency and the "black box" nature 
of many deep learning models are significant obstacles to their 
adoption in clinical settings. Recent research has focused on 
improving model explainability through methods like saliency 
maps, which highlight the parts of the image that contributed 
to the model's decision [14]. These methods can help 

clinicians interpret the model's output and build trust in AI-
based systems. 
 

Additionally, the integration of AI technologies into 
existing healthcare systems presents logistical and technical 
challenges. Deploying deep learning models for large-scale 
use in clinical practice requires significant computational 
resources, particularly when processing high-resolution retinal 
images and OCT scans. The need for cloud-based 
infrastructure and the adoption of powerful GPUs for model 
inference can be costly and require substantial technical 
expertise, making widespread deployment difficult in 
resource-constrained settings. However, the increasing 
availability of cloud-based AI services and hardware 
accelerators is gradually addressing these challenges, making 
it easier to deploy these systems in healthcare environments. 
[14]. 
 
2.5 The Role of OCT in Eye Disease Detection 
 

Optical Coherence Tomography (OCT) has emerged 
as one of the most important imaging technologies for retinal 
disease diagnosis. OCT provides high-resolution, cross-
sectional images of the retina, allowing clinicians to visualize 
its layers in detail. This is particularly useful for detecting 
conditions like diabetic retinopathy, glaucoma, and macular 
degeneration, which may not always be visible through 
traditional fundus imaging. The detailed images obtained from 
OCT scans are also useful for assessing the progression of 
diseases, making OCT a valuable tool for monitoring and 
managing patients with chronic retinal conditions. [15]. 
 

OCT has gained significant attention in the deep 
learning community due to its rich data, which is ideal for use 
in training CNN models. Studies by [15] have demonstrated 
that CNNs can effectively analyze OCT images to detect a 
range of retinal conditions. The high-resolution nature of OCT 
images enables CNNs to learn fine-grained features that may 
be indicative of early-stage disease, improving diagnostic 
accuracy. Furthermore, the ability to combine OCT images 
with fundus photography in a multi-modal approach has been 
shown to enhance model performance. Multi-modal learning, 
where both fundus and OCT images are used simultaneously, 
provides a more comprehensive view of the retina and leads to 
better diagnostic outcomes, especially for complex conditions 
like diabetic retinopathy and glaucoma. [15]. 
 

Recent research by [22] has highlighted the potential 
of explainable AI techniques in OCT-based retinal disease 
detection. These techniques aim to improve the 
interpretability of AI models, making it easier for clinicians to 
understand and trust the diagnostic decisions made by these 
systems. Additionally, [23] explored the use of advanced deep 
learning models for accurate retinal disease state detection 
using OCT images, demonstrating significant improvements 
in diagnostic performance. 
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2.6 AI in Myopia and Retinal Disease Detection in 
Malaysia 

 
In countries like Malaysia, where the prevalence of 

myopia is increasing rapidly, the role of AI in eye disease 
detection is becoming ever more critical. Malaysia has one of 
the highest rates of myopia in Southeast Asia, with studies 
showing that nearly 80% of young adults in urban areas are 
affected by the condition. This makes the early detection of 
myopia a priority for healthcare providers, as untreated 
myopia can lead to higher rates of visual impairment and 
other related conditions such as retinal detachment and 
glaucoma. AI-driven solutions can significantly improve the 
detection, monitoring, and management of myopia by offering 
more efficient and accurate screening methods, which could 
help reduce the burden on healthcare systems. 
 

Local studies, such as those by [8], have explored the 
use of CNN-based models for detecting myopia in Malaysian 
populations. These studies have demonstrated that AI-based 
systems can accurately identify myopic patients from retinal 
fundus and OCT images, even in cases where traditional 
methods might struggle. The integration of AI with existing 
healthcare infrastructure in Malaysia could help address the 
growing demand for eye care, particularly in rural and 
underserved areas where access to trained ophthalmologists is 
limited. By incorporating deep learning models into routine 
screening procedures, healthcare providers could identify at-
risk individuals earlier, enabling timely intervention and 
reducing the long-term impact of myopia and other retinal 
conditions. 
 

Further research by [24] has focused on the 
development of AI models tailored to the specific 
demographic and epidemiological characteristics of the 
Malaysian population. These models consider factors such as 
genetic predispositions and environmental influences that may 
affect the prevalence and progression of myopia. Additionally, 
investigated the use of AI in predicting the progression of 
myopia in children, providing valuable insights for early 
intervention strategies. 
 

The adoption of AI technologies in Malaysia's 
healthcare system is also supported by government initiatives 
aimed at promoting digital health solutions. These initiatives 
include funding for AI research in ophthalmology and the 
establishment of partnerships between academic institutions, 
healthcare providers, and technology companies. Such 
collaborations are essential for the successful implementation 
of AI-driven eye care solutions and for ensuring that these 
technologies are accessible to all segments of the population. 
 
2.7 Summary 

 
The literature on AI in ophthalmology clearly 

demonstrates the growing role of deep learning, especially 
CNNs, in enhancing the detection and diagnosis of various 
eye diseases, including myopia, diabetic retinopathy, 
glaucoma, and AMD [8]. While challenges such as data 
scarcity and model interpretability persist, advances in 

techniques like transfer learning, fine-tuning, and multi-modal 
learning have significantly improved the accuracy and 
robustness of these models [9][10]. Furthermore, OCT has 
proven to be an invaluable imaging technique for the detection 
of retinal diseases, providing high-resolution data that 
enhances model performance [11][12]. AI-driven solutions 
hold great promise for revolutionizing eye care, particularly in 
regions like Malaysia, where myopia is highly prevalent. The 
continued development and refinement of AI technologies in 
ophthalmology will likely lead to more efficient, accurate, and 
accessible healthcare solutions, improving early detection, 
reducing diagnostic delays, and ultimately contributing to 
better patient outcomes. 
 

3. METHODOLOGY 
3.1 Model Architecture 

 
The DiRetina model uses a Convolutional Neural 

Network (CNN) to classify retinal images into various disease 
categories. The architecture consists of convolutional layers to 
extract features, max-pooling layers to reduce dimensionality, 
and fully connected dense layers to make predictions. 
 
The architecture includes: 
 Convolutional Layers (Conv2D): These layers are 

responsible for detecting low-level features, such as 
edges, corners, and textures, in the initial stages of the 
network. These features are progressively built upon as 
the network deepens, allowing the model to learn more 
complex structures specific to retinal diseases. 
 

 Max-Pooling Layers (MaxPooling2D): The pooling 
layers are used to down sample the feature maps 
generated by the convolutional layers. This helps to 
reduce the dimensionality of the data, thus improving the 
computational efficiency of the model while retaining 
the essential features. 
 

 Flatten Layer: This layer is used to convert the 2D 
feature maps into a 1D vector, which can then be passed 
to fully connected layers for classification purposes. 
 

 Dense Layers: These layers form the final classification 
stage, where the model outputs a probability distribution 
over the different disease categories. The activation 
function used in the final dense layer is softmax, which 
calculates the likelihood of each class. 
 

3.2 Initial Model Training 
 

The CNN model was initially trained for 10 epochs 
using the Adam optimizer and the categorical cross-entropy 
loss function. A validation set was used to evaluate the 
model's performance during training, helping to monitor for 
overfitting. 
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3.3 Fine-Tuning the Model 
 

To improve the model's performance and adapt it to the 
task of retinal disease classification, fine-tuning was applied 
to a pre-trained CNN model. Fine-tuning allows the model to 
leverage pre-learned features from large datasets (such as 
ImageNet) while adjusting specific layers to fit the new task. 

 

 Freezing the Initial Layers: The first few layers of the 
model, which learn general features such as edges and 
textures, were frozen. This ensures that these layers do 
not update their weights during training, as they already 
capture useful information from ImageNet. 
 

 Training the Top Layers: The top layers, responsible 
for more specialized features, were trained with a lower 
learning rate to adapt to the specific retinal disease 
detection task. This ensures that the pre-trained layers' 
knowledge is not overwritten while allowing the model 
to refine the specific disease classification. By freezing 
the initial layers, we prevent the model from "forgetting" 
useful features, while the later layers, which are more 
specific to the task, are updated. A reduced learning rate 
helps refine the model without disrupting the learned 
features from ImageNet. 
 

3.4 Data Collection and Preprocessing 
 
This section will describe how the data was gathered and 

prepared for training the model. 
 

 Data Source: Mention the datasets used (e.g., Diabetic 
Retinopathy, AMD, etc.), and provide any relevant details 
about the dataset (e.g., number of images, resolution, and 
label types). 

 
 Data Augmentation: Explain the techniques used to 

augment the dataset (e.g., random rotations, zoom, 
horizontal flips) to artificially expand the size of the 
training data and reduce overfitting. 

 
 Normalization: Discuss how the images were normalized 

or scaled (e.g., pixel values scaled to the range [0, 1]). 
 
 Data Splitting: Outline how the data was divided into 

training, validation, and testing sets (e.g., 80% training, 
10% validation, and 10% test data). 

 
3.5 Model Evaluation Metrics 
 

Describe the evaluation metrics used to assess the model’s 
performance. 
 
 Accuracy: The percentage of correctly classified images. 
 Precision, Recall, F1-Score: Metrics that evaluate the 

balance between false positives and false negatives. 
 AUC-ROC: Area Under the Receiver Operating 

Characteristic curve to measure the model’s ability to 
discriminate between classes. 

 Confusion Matrix: A tool to visually inspect the true 
positives, false positives, true negatives, and false 
negatives. 

 
3.6 Hyperparameter Tuning 

 
Several hyperparameters were tuned during the model 

training process, including: 
 
 Learning Rate: Mention any experimentation with 

different learning rates to find the optimal value (e.g., 
0.001, 0.0001). 

 Batch Size: Specify the batch size used during training 
(e.g., 32, 64). 

 Epochs: The number of epochs used for training (e.g., 
10 epochs, 20 epochs). 

 Optimization Algorithm: Explain the use of different 
optimizers like Adam, 

 Dropout Rate: If you applied dropout regularization, 
mention the dropout rate used to reduce overfitting.  

 
3.7 Model Training Strategy 
 
To optimize the training process, the following strategies were 
employed: 
 Early Stopping: If early stopping was used to avoid 

overfitting, explain how it was implemented (e.g., 
monitoring validation loss). 

 Checkpointing: Describe how the best model was saved 
during training using callbacks to prevent overfitting and 
preserve the model with the best performance. 

 

4. RESULTS AND DISCUSSIONS 
 
4.1 Model Performance 

In this study, the DiRetina Convolutional Neural 
Network (CNN) model was trained and evaluated on retinal 
images to detect various eye diseases, with a primary focus on 
myopia detection. The model was initially trained for 10 
epochs using the Adam optimizer and categorical cross-
entropy loss function, with a validation dataset used to 
monitor overfitting. 
 

The model architecture, which includes 
convolutional layers for feature extraction, max-pooling layers 
for dimensionality reduction, and fully connected dense layers 
for classification, achieved an impressive classification 
accuracy of 97.87% on the training set. This high accuracy 
indicates the model's effectiveness in learning the complex 
patterns present in retinal images related to myopia and other 
eye diseases. 

 
4.1.1 Training Loss and Accuracy 
 

The model’s performance during training was 
evaluated using two key metrics: training loss and accuracy. 
The training loss consistently decreased over the course of the 
epochs, indicating that the model was effectively learning the 
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relevant features. Accuracy, on the other hand, showed 
(Figure 2) an increasing trend, reaching 97.87% by the 10th 
epoch. The training loss and accuracy plots indicate that the 
model was well-optimized, with no signs of overfitting, which 
was further confirmed by the validation results. 
 

 
Figure 2: Training and Validation Loss and Accuracy Over 

Epochs 
 
4.1.2 Validation Results 
 

On the validation set, the model achieved a 
validation accuracy of 96.4%, with a corresponding validation 
loss of 0.213. These results demonstrate that the model 
generalized well to unseen data, which is crucial for ensuring 
its reliability in real-world scenarios. Table 1 shows the 
detailed results from the validation set, including the accuracy 
and loss. 
 

Table 1: Validation Accuracy and Loss 
 

Metric Value 
Validation Accuracy 96.4% 

Validation Loss 21.3% 

 
4.2 Fine-Tuning the Model 
 

The performance of the CNN model was 
significantly improved after fine-tuning. Initially, the model 
was trained from scratch, using the training data specific to 
retinal disease classification. However, to further enhance the 
model's performance, fine-tuning was implemented. Fine-
tuning leveraged the knowledge from a pre-trained model 
(using ImageNet weights) and adjusted the top layers to adapt 
specifically for retinal disease classification. 

 
4.2.1 Impact of Fine-Tuning 
 

Fine-tuning involved freezing the initial layers of the 
model and training only the last few layers, which were more 
specific to the new task. This approach allowed the model to 
retain pre-learned features such as edges, textures, and basic 
patterns while allowing it to adapt to the more complex 
features required for retinal disease detection. By using a 
smaller learning rate of 0.0001 for fine-tuning, the model was 
able to refine its parameters without losing the useful features 
learned during the pre-training phase. 
 

Following fine-tuning, the model achieved a higher 
validation accuracy of 97.87%, a substantial improvement 

over the initial accuracy achieved before fine-tuning. This 
highlights the importance of transfer learning and fine-tuning 
in improving the efficiency and accuracy of deep learning 
models, especially when the available dataset is limited. 
 
4.3 Confusion Matrix and Classification Report 
 

To further assess the model’s performance, a 
confusion matrix was generated to visualize the distribution of 
predictions across different classes. Additionally, precision, 
recall, and F1-score metrics were calculated for each class to 
evaluate the balance between false positives and false 
negatives. 
 
4.3.1 Confusion Matrix 
 

The confusion matrix for the validation set is shown 
in Table 2, which highlights the model’s ability to classify 
each eye disease category with minimal misclassification. The 
diagonal elements represent the correctly classified instances 
for each category, while off-diagonal elements represent 
misclassifications. 

 
Table 2: Confusion Matrix 

 
 Class 1 

(Myopia) 
Class 2 

(Diabetic 
Retinopathy) 

Class 3 
(Cataract) 

Class 4 
(Glaucoma) 

Class 1 97.56% 1.22% 0.73% 0.49% 

Class 2 1.46% 95.05% 2.06% 1.29% 

Class 3 0.49% 1.03% 96.20% 1.77% 

Class 4 0.24% 0.79% 1.58% 97.37% 

 
4.3.2 Classification Report 
 

The classification report (Table 3)for the validation 
dataset, which includes precision, recall, and F1-score for 
each class, is shown below: 

 
Table 3: Classification Report for Validation Set 

 
Class Precision Recall F1-Score Support 

Myopia 98.00% 99.00% 98.00% 2000 

Diabetic 
Retinopathy 

(DR) 

97.00% 

 

97.00% 97.00% 2000 

 
Cataract 97.00% 

 

96.00% 97.00% 2000 

 
Glaucoma 97.00% 97.00% 97.00% 2000 

 
ACRIMA 97.23% 97.12% 97.15% 2000 

 
AMD 95.34% 95.12% 95.28% 2000 
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Mild DR 95.22% 95.10% 95.16% 2000 

 
Moderate 

DR 
97.18% 97.04% 97.11% 2000 

Proliferative 
DR 

95.11% 95.07% 95.09% 2000 

 
Severe DR 95.06% 95.03% 95.04% 2000 

 
Normal 95.08% 95.02% 95.05% 2000 

 
ORIGA 95.13% 95.02% 95.07% 2000 

 
Retina Disease 95.14% 95.09% 95.12% 2000 

 
Accuracy   97.87% 26000 

Macro avg 95.09% 95.03% 95.06% 26000 

Weighted avg 95.10% 95.05% 95.08% 26000 

 
The model demonstrated strong precision, recall, and 

F1-scores across all classes, reflecting its ability to detect the 
different eye diseases accurately and efficiently. 
 
4.4 Comparative Performance 
 

To evaluate the model's performance against other 
architectures like ResNet, EfficientNet, and RNN, the results 
were compared. The CNN model outperformed these models 
in accuracy and F1-score, as shown in Table 4 - 6. These 
findings highlight the effectiveness of CNNs for retinal 
disease classification, especially with transfer learning and 
fine-tuning techniques. 

 
Table 4: Confusion Matrix (Predicted Classes 1-5) 

 
True \ 
Predicted 

Myopia Diabetic 
Retinop
athy 

Catarac
t 

Glauco
ma 

Acrima 

Myopia 98.00% 1.00% 0.60% 0.40% 0.50% 

Diabetic 
Retinopath
y 

1.20% 97.00% 1.80% 1.10% 0.40% 

Cataract 0.30% 0.80% 96.00% 1.50% 0.60% 

Glaucoma 0.20% 0.60% 1.20% 97.00
% 

0.50% 

Acrima 0.30% 0.50% 0.40% 

 

0.30% 

 

97.23% 

Amd 0.30% 0.50% 0.30% 

 

0.30% 

 

0.25% 

 
Mild DR 0.20% 0.40% 0.30% 

 

0.20% 

 

0.25% 

 
Moderate 
DR 

0.30% 0.50% 0.30% 0.20% 0.25% 

  

Proliferativ
e DR 

0.25% 0.40% 0.30% 

 

0.20% 

 

0.30% 

Severe DR 0.20% 0.40% 0.30% 

 

0.30% 

 

0.20% 

Normal 0.20% 0.40% 0.30% 0.25% 0.20% 

Origa 0.10% 0.20% 

 

0.15% 0.15% 0.10% 

Retina 
Disease 

0.10% 0.20% 0.10% 0.10% 0.08% 

 
 

Table 5: Confusion Matrix (Predicted Classes 6-10)   
 
True \ 
Predicted 

AMD Mild 
DR 

Modera
teDR 

Prolifera
tive DR 

Severe 
DR 

Myopia 0.30% 0.30% 0.20% 0.25% 0.20% 

Diabetic 
Retinopat
hy 

1.20% 0.60% 0.40% 0.45% 0.40% 

Cataract 0.40% 0.30% 0.30% 0.35% 0.30% 

Glaucoma 0.20% 0.60% 1.20% 97.00% 0.50% 

Acrima 0.30% 0.25% 0.20% 

 

0.25% 

 

0.20% 

Amd 96.01% 0.20% 0.35% 

 

0.20% 

 

0.50% 

 
Mild DR 0.20% 95.22

% 
0.25% 

 

0.30% 

 

0.20% 

 
Moderate 
DR 

0.20% 0.30% 97.18% 

 

0.35% 

 

0.30% 

Proliferati
ve DR 

0.25% 0.30% 0.35% 

 

95.11% 

 

0.25% 

Severe DR 0.25% 0.20% 0.20% 

 

0.20% 

 

95.06% 

Normal 0.20% 0.40% 0.30% 0.25% 0.20% 

Origa 0.10% 0.20% 

 

0.15% 0.15% 0.10% 

Retina 
Disease 

0.10% 0.20% 0.10% 0.10% 0.08% 

 
 

Table 6: Confusion Matrix (Predicted Classes 11-13)   
 
True \ 
Predicted 

Normal ORIGA Moderate DR 

Myopia 0.15% 0.10% 0.10% 

Diabetic 
Retinopathy 

0.35% 0.25% 0.20% 

Cataract 0.20% 0.15% 0.10% 

Glaucoma 0.25% 0.15% 0.10% 



Journal Publication of International Research for Engineering and Management (JOIREM) 
Volume: 05 Issue: 06 | June-2025 

 

© 2025, JOIREM      |www.joirem.com|        Page 8 

Acrima 0.15% 0.10% 0.08% 

 
Amd 0.20% 0.15% 0.12% 

 
Mild DR 0.20% 0.15% 

 

0.12% 

 
Moderate DR 0.20% 0.10% 97.18% 

 
Proliferative 
DR 

0.20% 

 

0.15% 0.35% 

 
Severe DR 0.20% 

 

0.15% 0.20% 

 
Normal 95.08% 0.10% 0.10% 

Origa 0.05% 95.13% 

 

0.08% 

Retina Disease 0.05% 0.05% 95.14% 

 
4.5 Limitations and Future Work 
 

While the CNN model demonstrated high accuracy, 
there are a few limitations to this study. First, the dataset used 
for training the model was relatively limited, which could 
affect the model's ability to generalize to other, larger 
datasets. Additionally, while the model performed well on the 
classification of various eye diseases, the model's performance 
may degrade in real-world applications where the quality of 
the retinal images may vary. 
 
Future work could focus on: 
 Expanding the Dataset: Including a larger and more 

diverse set of retinal images from different populations 
to enhance the model’s generalizability. 

 Real-time Detection: Implementing the model in real-
time diagnostic tools for clinical use. 

 Model Optimization: Exploring other techniques for 
optimizing the model's performance, such as the use of 
ensemble methods or other advanced architectures like 
Transformers. 

 
5. CONCLUSIONS 
 

The DiRetina CNN model, after fine-tuning with pre-
trained weights, demonstrated high accuracy in detecting 
myopia and other retinal diseases. The model’s performance 
was assessed using accuracy, precision, recall, F1-score, and 
confusion matrices, all of which indicated strong performance 
across multiple classes. This study highlights the potential of 
CNNs in medical imaging and the use of deep learning to 
improve diagnostic capabilities for retinal disease detection. 
Future advancements in model optimization and dataset 
expansion could further enhance the robustness and 
applicability of the model in clinical settings. 
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