

ARTIFICIAL INTELLIGENCE IN MEDICINE: A COMPREHENSIVE SURVEY OF APPLICATIONS AND EMERGING TRENDS

Prof. Ruksar Fatima¹, Rabbika Tasneem²

*Dept. of Computer Science and Engineering
Khaja Banda Nawaz University*

Abstract - Artificial Intelligence (AI) has made significant strides in the field of medicine and healthcare, offering transformative potential to improve patient outcomes, streamline processes, and enhance clinical decision-making. From diagnostic tools to treatment planning, AI is reshaping the healthcare landscape by offering innovative solutions. This review presents an overview of both current and near-future applications of AI in medicine, categorizing them into diagnostic, therapeutic, administrative, and personalized healthcare domains. Additionally, the article explores the ethical challenges and social implications that accompany the widespread integration of AI technologies in healthcare, focusing on issues such as data privacy, equity, accountability, and the potential impact on healthcare professionals and patients alike. The article concludes by discussing the evolving role of AI in shaping the future of healthcare, emphasizing the need for responsible implementation to maximize benefits while mitigating risks.

1. INTRODUCTION

Artificial Intelligence (AI) has emerged as a game-changing technology with the potential to revolutionize the healthcare industry. AI encompasses a broad range of technologies, including machine learning (ML), deep learning (DL), natural language processing (NLP), and robotics, all of which are increasingly being integrated into various aspects of healthcare. These advancements are improving diagnostics, personalizing treatments, optimizing administrative workflows, and enhancing patient care. As AI continues to advance, it offers opportunities to overcome long-standing challenges in healthcare, such as improving accuracy, efficiency, and accessibility of services. However, the adoption of AI in medicine also raises important ethical and social concerns that must be addressed to ensure equitable and responsible use of these technologies.

Generative Artificial intelligence (GenAI) is a technology that autonomously produces new original outputs based on the large-scale multimodal input data it has been trained on. These include text, images, speech, video, symbols, molecular

structures, chemical data, and other types of data. GenAI is a subset of the broader Artificial intelligence umbrella that enables computers to learn from the structures and patterns inherent in data, enabling subsequent decision-making.

Deep learning (DL) is a more complex iteration of machine learning (ML), inspired by the architecture of the human brain, using layers of neural networks to assimilate and learn from large amounts of data. Large language models (LLMs) are products of deep learning and have the ability to understand and create texts like human. These LLMs use natural language processing (NLP), a field at the intersection of computer science, artificial intelligence, and linguistics that enables computers to understand, interpret, and generate human language in a meaningful and useful way. GenAI also has applications in the field of computer vision, where generative adversarial networks (GANs) have been implemented to generate many forms of medical images, ranging from pathology slides to ultrasound and MRI. Conversely, discriminative AI models (sometimes referred to as predictive models) classify input data, predicting labels based on the information provided.

Hence comes the term natural language processing, which includes specific applications of natural language processing such as speech recognition, text analysis, translation, and other language-related purposes. It is used to create, understand, and classify clinical documents and other reported research data. It is useful in analyzing unstructured clinical notes and reporting from these data.

As deep learning models scale to large datasets - in part because they can run on specialized computing hardware - they continue to improve with more data, enabling them to outperform many classical machine learning approaches. Deep learning systems can also accept multiple types of data as input - an aspect of particular importance for heterogeneous healthcare data. The most common models are trained using supervised learning, where datasets consist of input data points (e.g., images of skin lesions) and corresponding output data labels (e.g., "benign" or "malignant"). Reinforced learning (RL), where computational agents learn by trial and error or through expert demonstration has advanced with the adoption of deep learning, achieving

remarkable achievements. RL can be useful in healthcare when learning requires demonstration by a physician, for example in learning how to suture wounds in robot-assisted surgeries. Machine vision, coupled with artificial intelligence, enables robotic systems to interpret images during surgery in real time, ensuring precise navigation, tissue identification, and execution of surgical tasks. Moreover, predictive modeling and decision support systems for personalized surgery play a crucial role in personalized surgery by predicting potential complications and recommending optimal surgical approaches tailored to individual patient characteristics. These models enhance the accuracy of surgical interventions and reduce the risk of adverse outcomes.

Many calculations and operations are performed on the input data through machine learning algorithms. Data preprocessing is the first essential step to reduce false predictions or incorrect results, speed up data processing, and ultimately improve the overall data quality. Then, the data is processed and the crucial features are extracted and implemented according to the specific machine learning or deep learning model for image classification.

Machine learning allows computers to perform the tasks of medical professionals and has a widely used subfield in medical image recognition called Deep Learning, which is a method of designing a machine learning algorithm where simple concepts are built on top of each other to form a deep structure with many processing layers. In other words, deep learning is the development of machine learning for analyzing big data. It replaces the classic manual method of designing and extracting patterns used for classification with an automated strategy that allows the computer to identify essential features by training it on a dataset. While machine learning is not a new concept, the processing of big data and the increase in computing power have made machine learning successful and popular in recent years.

Deep learning has outperformed previous advanced algorithms in many visual recognition tasks, and its performance has improved dramatically. The ImageNet visual recognition competition is the largest annual object recognition competition. Researchers classified 1.3 million high-resolution images using a deep learning-based CNN model; they significantly improved the model's performance by achieving error rates of 39.7% and 18.9%, winning the challenge. Deep learning algorithms have become more popular since then. A deep learning algorithm is a deep artificial neural network (ANN) inspired by human brain cells and consists of several simple processing units that combine to form a more complex structure. These units are grouped into layers in each algorithm and are referred to as neurons. Input signals are combined and

transmitted to other cells if their value is higher than a threshold value. In the artificial type, the signals are replaced by a sum and activation function that combine to create more complex relationships, similar to the human brain through a network. The threshold value is a term used in signal processing and image processing. It is a value that represents the minimum signal that needs to be processed. If the signal is less than the threshold value, it is given the value 0 while if the signal is greater than the threshold value, the signal is either taken according to its value or, in most cases, given the value 1.

The convolutional neural network can be defined as a special type of feed forward neural network that derives its inspiration from the biological processes that occur in the optic lobe specifically in the brain of living organisms; it is considered a solution to many computer vision problems in artificial intelligence such as image and video processing. It is a successful approach to image analysis and classification and is a supervised deep learning model. It consists of fully connected layers with standard weights that result in fewer parameters for training features through the backpropagation process. It is designed to extract spatial information from input images and aims to learn hierarchical features adaptively, classify image data, and extract their features automatically. The main advantage of this algorithm is to learn highly abstract features with few parameters and simple preprocessing. The initialization of the neural network and the order of samples during the training phase are usually random. However, when the training is over, nothing unexpected happens to the neural network.

They involve well-defined computations, but their complex and deep structure often makes them incomprehensible to humans. Therefore, the training method is usually not mentioned in explaining the behavior of networks, and the trained network can be understood usually from the characteristics of the dataset used for training.

Researchers use multiple scenarios based on machine learning and deep learning models to predict conditions such as liver diseases, heart diseases, Alzheimer's, mental illness, dentistry, gastroenterology, intensive care, and various types of cancers where early detection is vital for treatment. Some researchers have also used deep learning techniques to diagnose and identify bacterial pneumonia using chest X-rays for children. Significant efforts have been made to identify different features of chest CT scan characteristics for different diseases, and new hybrid models based on case-based reasoning have been proposed to diagnose different skin diseases in different studies. The proposal of real-time personal monitoring systems based on artificial neural network techniques is widely used in healthcare to receive vital information about the body; this

device can help patients manage their health, especially in critical cases, as researchers have applied artificial neural network models to predict diabetes and achieved 91% accuracy.

Artificial intelligence methods go hand in hand with the Internet of Things (IoT) in the healthcare system in treatment procedures and healthcare technology. A reliable IoT-based system using machine learning algorithms for healthcare is proposed to monitor human activities and the surrounding environment through a body sensor network. Studies proposed a hybrid IoT model using healthcare monitoring system and random forest technique to predict type 2 diabetes .

Thus, edge computing emerged, which is a key technology for processing and analyzing massive amounts of IoT data, requiring decision-making to offload computational tasks to edge servers. Currently, deep reinforced learning (DRL) has been used to solve a number of difficult sequential decision problems by combining reinforced learning (RL) and deep learning (DL).

Researchers have also achieved impressive results in mitigating the risk of type 2 diabetes among people based on their personal lifestyle information and achieved high accuracy using a random forest classifier, which outperformed other algorithms. A mobile-based platform has been developed to detect tuberculosis antibodies in real time using a random forest classifier and achieved an accuracy of 98.4%. A research study proposed an AI-based framework to classify multiple gastrointestinal (GI) diseases, colon cancer, and rectal cancer using recurrent neural networks (RNNs), which are recurrent neural networks or feedback neural networks (RNNs), which are in contrast to feedforward networks. The most important feature of RNNs is that the connections between neurons are in one layer and the neurons in the same or previous layer. This is the best way to connect neural networks, especially in the neocortex. In artificial neural networks, the recurrent association of typical neurons is used to discover time-coded information in data. Examples of these recurrent neural networks include the Hopfield fully connected neural network. As well as the Long short-term memory (LSTM) and achieved an accuracy of 97.057%.

Fully Connected Neural Networks (FCNNs) consist of neurons and model layers, where the inputs of each layer are connected to each neuron in the layer below. The most straightforward way to understand neurons is to think of them as linear regression models, where each neuron uses input data (x), weights (y), and bias (z) to generate an output (y). If the result after the activation function is zero, the neuron in that particular state is removed. The value of the neuron must pass through the

activation function. In any other case, the value will be sent to the next layer of the network. Depending on the type of activation function used, the output value changes. For example, the output of a sigmoid activation function will have an S-shaped curve and range between 0 and 1. The Rectified Linear Unit (ReLU) activation function is another example; for values greater than 0, it has a linear shape, while for values less than or equal to 0, it has a 0 .

The global healthcare AI market is expected to reach nearly \$188 billion by 2030. This growth comes at a critical juncture in healthcare, with an expected shortage of nearly 10 million doctors, nurses, and midwives worldwide by 2030, at the same time as we face the growing needs of an aging population. AI offers practical solutions that can help organizations worldwide overcome these challenges, improve outcomes, enhance care, and promote health equity. However, the potential of generative AI in healthcare, estimated to be worth \$17 billion by 2032, is still hard to ignore, with most of it related to medical imaging and drug discovery.

Arguably, the most common roles of Artificial intelligence in medical settings are clinical decision support and imaging analysis. Clinical decision support tools can help providers make decisions about treatments, medications, mental health, and other patient needs by providing them with quick access to information or research relevant to their patients. In medical imaging. AI tools are used to analyze CT scans, X-rays, MRIs, and other images for lesions or other findings that a human radiologist might miss.

Controlling and hypertensive patients and educating them about healthcare are the two most important points to reduce stroke and cardiovascular diseases. Researchers have evaluated digital healthcare technologies and artificial intelligence in this regard and proposed a privacy protection system to collect and store individuals' data. Moreover, many researchers have conducted studies on disease prediction to identify and predict diseases in their early stages; a new hybrid machine learning model based on the Internet of Things was proposed to detect diseases in the early stages with an accuracy of 100% and 99.50%. Researchers also proposed an approach to predict cardiovascular diseases according to different characteristics. The challenges created by the COVID-19 pandemic for many healthcare systems have led many healthcare organizations around the world to start field test new technologies supported by artificial intelligence, such as algorithms designed to help monitor patients and AI-powered tools to screen COVID-19 patients . Hence, it can be asserted that there is no doubt that artificial intelligence will become an essential part of digital health systems that shape and support modern medicine.

An important question is whether there is gender or racial bias in the images produced by Artificial intelligence programs such as ChatGPT. It can be said that many AI models generate images based on the data they were trained on. This data reflects the diversity and biases present in cultural content and the broader internet, which brings forth another important question on the gender and racial stereotypes that AI programs amplify.

Diagnostic Tools

AI has shown remarkable potential in diagnostic applications, particularly in imaging and pathology. Machine learning algorithms have been developed to assist radiologists in interpreting medical images, such as X-rays, MRIs, and CT scans, with higher accuracy and speed than traditional methods. AI systems can also detect early signs of diseases like cancer, neurological conditions, and cardiovascular diseases, often at stages where human clinicians may not be able to identify them. Notably, AI algorithms are being used to analyze medical images for detecting abnormalities, such as tumors or fractures, thereby enhancing diagnostic precision and reducing human error.

1.1 THERAPEUTIC INTERVENTIONS

In therapeutic applications, AI is being used to personalize treatment plans based on individual patient data. Machine learning models can predict how patients will respond to certain treatments, such as medications or surgeries, by analyzing historical data, genetic information, and lifestyle factors. Furthermore, AI-powered robots are being utilized in surgery to assist surgeons with precision and reduce the risk of complications. These systems can offer real-time assistance during procedures, enabling more efficient and effective treatments.

1.2 ADMINISTRATIVE AUTOMATION

AI is also transforming administrative functions in healthcare, such as scheduling, billing, and claims processing. Natural language processing (NLP) is being used to automate documentation tasks, allowing healthcare professionals to focus more on patient care. AI-driven chatbots and virtual assistants are improving patient engagement by providing real-time responses to inquiries, appointment scheduling, and basic healthcare advice, further optimizing workflow efficiency.

1.3 PERSONALIZED HEALTHCARE

AI has the ability to provide personalized healthcare solutions by analyzing vast amounts of data to identify unique patient

needs. Precision medicine, which tailors treatments to an individual's genetic profile and environmental factors, is one area where AI is making significant contributions. AI is also facilitating the development of wearable devices that monitor vital signs in real-time, enabling proactive health management and early intervention when necessary.

2. RELATED WORK

The literature review thoroughly investigates ten articles dedicated to the field of multi-disease prediction based on symptoms, specifically within the context of an AI healthcare system for identifying the nearest doctor. This examination employs a diverse range of machine and deep learning methods, showcasing various approaches in the analyzed works. The proposed solutions address challenges such as explainability, data privacy, and model stability, incorporating state-of-the-art algorithms and innovative strategies. The intersection of machine learning and healthcare underscores the interdisciplinary nature of healthcare data mining throughout the literature.

The research emphasizes the necessity for holistic techniques in predicting multiple diseases through symptom-based approaches. Additionally, the reviewed papers suggest potential avenues for future research, including refining models and exploring multi-tasking model applications. This forward-thinking perspective underscores the dynamic nature of the field, with researchers consistently aiming to enhance forecast accuracy, customize interventions, and ultimately improve healthcare outcomes. In essence, this literature review provides an evolving overview of the developing field of multi-disease prediction, highlighting various achievements and outlining the direction of future developments in healthcare data analytics. represents an innovative healthcare assistant designed to predict various ailments using Artificial Intelligence and machine learning. AI-DOC allows users to input medical parameters for disease forecasts, offering a user-friendly platform that reduces time and expenses for initial checkups. This method aims to support healthcare professionals by providing early aid to patients, emphasizing simplicity for easy understanding of medical reports and promoting informed decision-making. With a commitment to privacy, AI-DOC integrates a login feature to safeguard personal medical data, contributing to enhanced health outcomes for users. Dr. Meera Gandhi and her team have developed , an interactive AI-driven medical assistant. This application utilizes AI to analyze symptoms, diagnose medical conditions, and offer personalized treatments based on user input and health metrics. With features like medication reminders and health report generation, it aims to transform healthcare by enhancing

accessibility, efficiency, and personalization for both users and healthcare providers. They explore how AI impacts the diagnostic process in dermatology, streamlining it by separating prediction and judgment aspects. Dermatologists' attitudes towards AI vary, with some uncertain and others highlighting its data processing speed. Ethical considerations are discussed, stressing the need for a new mindset and involving medical professionals in AI design for effective integration. The document conducts a comprehensive examination of AI-based medical assistant chatbots, exploring their design, implementation, and applications in healthcare. It delves into chatbots across medical consultation, mental health interventions, and diabetic patient support, scrutinizing diverse models using technologies like natural language processing and machine learning. The document delves into the progress, hurdles, and forthcoming prospects within smart healthcare systems, emphasizing the use of AI and machine learning. It explores the transition towards personalized healthcare frameworks to accommodate the increasing population affected by chronic ailments and meet the needs of diverse demographics. Offers an extensive examination of Natural Language Processing (NLP) in smart healthcare, highlighting its techniques and applications. It scrutinizes various NLP approaches and their utilization across healthcare domains, addressing issues like the COVID-19 pandemic and mental health. The research paper explores the utilization of machine learning algorithms to optimize the scheduling of medical appointments, predicting patient attendance and improving resource utilization in healthcare environments. Traces the progression of healthcare technology from Healthcare 1.0 to Healthcare 5.0, emphasizing the transition towards personalized and IoT-driven healthcare solutions. It introduces the concept of Comprehensive Personalized Healthcare Services (CPHS) to overcome existing limitations. The document underscores the necessity for smart healthcare systems, emphasizing the role of AI, ML, and speech recognition in providing affordable technical solutions while upholding care standards. It proposes an innovative smart healthcare system rooted in speech recognition and integrates edge/fog/cloud computing. It examines the creation of a contextual chatbot tailored for healthcare applications through deep learning techniques, presenting a methodology for development and showcasing its efficacy in providing pertinent responses to user inquiries.

3. METHODOLOGY

Machine Learning (ML) and Deep Learning (DL): These are core AI techniques used for analyzing medical images, genomic data, and electronic health records (EHRs).

Natural Language Processing (NLP): NLP helps process

clinical text, patient records, and medical literature.

Data Analysis and Pattern Recognition: AI identifies patterns in large datasets to aid diagnosis, predict disease progression, and personalize treatment.

4. DISCUSSION

Artificial Intelligence (AI) is revolutionizing the medical field, transforming how healthcare is delivered, and improving patient outcomes. Let's dive into some exciting areas where AI is making a significant impact.

Key Applications of AI in Medicine:

1. **Disease Diagnosis and Prediction:** AI, especially deep learning algorithms, is enhancing medical imaging analysis for detecting diseases like cancer, COVID-19, and neurological disorders.
2. **Personalized Medicine:** AI analyzes genomic data to tailor treatments to individual patient profiles, improving precision medicine.
3. **Clinical Decision Support:** AI systems assist healthcare professionals in making informed decisions by analyzing patient data and medical knowledge.
4. **Drug Discovery and Development:** AI accelerates drug design and optimization, with companies leveraging AI for new molecule development.
5. **Medical Imaging Analysis:** AI improves analysis of images like X-rays, MRI, and CT scans for better diagnosis.

Emerging Trends:

1. **Generative AI:** Being explored for creating synthetic patient data, aiding diagnosis, and treatment planning.
2. **Explainable AI (XAI):** Focus on making AI decisions transparent and interpretable for trust in healthcare.
3. **AI in Telemedicine:** Enhancing remote patient monitoring and care.

BENEFITS AND CHALLENGES

Benefits: AI can streamline administrative tasks, improve documentation, and support clinical decision-making, allowing physicians to focus more on patient care.

Challenges: Ensuring AI systems are ethical, transparent, and compliant with regulations is crucial. Data quality, bias, and patient privacy are significant concerns.

5. CONCLUSION

AI is undeniably transforming the landscape of healthcare, offering groundbreaking applications in diagnostics, treatment, administration, and personalized care. As we move toward a future where AI plays an increasingly central role, it is essential to address the ethical and social challenges that accompany this technological evolution. Ensuring equitable access, safeguarding data privacy, and fostering trust are key to realizing the full potential of AI while mitigating risks. The healthcare industry must adopt a proactive approach to incorporate AI responsibly and ethically, enabling both healthcare professionals and patients to benefit from the exciting opportunities that AI presents.

REFERENCES

- [1]. McCulloch WS, Pitts W. A logical calculus of the ideas imminent innervous activity. *Bull Math Biophys* 1943.
- [2]. Baxt WG, Skora J. Prospective validation of artificial neural network trained to identify acute myocardial infarction. *Lancet* 1996.
- [3]. Pesonen E, Ohmann C, Eskelinen M, Juhola M. Diagnosis of acute appendicitis in two databases. Evaluation of different neighborhoods with an LVQ neural network. *Methods Inf Med* 1998.
- [4] Golub R, Cantu Jr R, Tan M. The prediction of common bile duct stones using a neural network. *J Am Coll Surg* 1998.
- [5]. Downs J, Harrison RF, Kennedy RL, Cross SS. Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks. *Artif Intell Med* 1996.
- [6] Topol EJ. *High-performance medicine: the convergence of human and artificial intelligence*. *Nature Medicine*.
- [7] Gulshan V, Peng L, Coram M, et al. *Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs*
- [8] Esteva A, Kuprel B, Novoa RA, et al. *Dermatologist-level classification of skin cancer with deep neural networks*.
- [9] Najjar R, et al. *Redefining Radiology: A Review of Artificial Intelligence in Radiology*.
- [10] Askr H, et al. *Deep learning in drug discovery: an integrative review and outlook*.