

AI-Powered Occupational Health Surveillance System (AI-OHSS) for Enhanced Worker Safety in Aluminum Smelters

Subhasri S Nayak

Assistant Professor (Contractual), Department of Humanities, Veer Surendra Sai University, Burla Sambalpur, Odisha

subhasrisnayak@gmail.com

Abstract - The primary aluminum smelting industry poses significant occupational health and safety (OHS) risks, including exposure to high heat, noxious fumes (e.g., fluoride, sulfur dioxide), molten metal, and strenuous physical labor. Traditional OHS methods are often reactive. This paper proposes the AI-Powered Occupational Health Surveillance System (AI-OHSS), a novel, proactive, and real-time monitoring system utilizing the Internet of Things (IoT) and Machine Learning (ML). AI-OHSS integrates data from wearable biometrics, environmental sensors, and visual analytics to provide comprehensive surveillance. The system is designed to detect and predict immediate hazards (e.g., heat stress, gas leaks, fatigue) and long-term health risks, significantly enhancing worker safety and well-being in the potroom and casting areas. (advancing_ohs_iard)

1. Introduction: The Multilayered Hazards of the Smelter

Aluminum smelting is an energy-intensive process involving the reduction of alumina to aluminum in electrolytic cells (potrooms) operating at temperatures exceeding 950C. This environment subjects its workforce to a complex and acute array of occupational health and safety (OHS) risks, which are the primary motivation for developing the AI-OHSS.

One of the most pervasive and immediate threats is Thermal Stress. The potrooms expose workers to extreme radiant heat, which, when combined with the physically demanding nature of their tasks, rapidly elevates the risk of heat exhaustion and heat stroke. The core challenge is maintaining the body's thermal balance against an overwhelming external heat load. (niosh_heat_stress)

Compounding the thermal danger is the risk of Chemical Exposure. The smelting process produces hazardous byproducts and requires the use of dangerous materials. Key contaminants include hydrogen fluoride (HF) gas, released from the cryolite bath, and polycyclic aromatic hydrocarbons (PAHs). Inhalation of these substances can lead to immediate respiratory irritation, but sustained, low-level exposure is linked to long-term chronic conditions, including respiratory

diseases and an increased cancer risk. (smelter_risk_assessment)

Beyond these acute and chronic environmental hazards, the nature of the work itself imposes significant Physical Strain. Many core tasks, such as crust breaking, pot tapping, and moving heavy tools, are repetitive, strenuous, and ergonomically challenging. These activities place immense stress on the musculoskeletal system, drastically increasing the risk of musculoskeletal disorders (MSDs), particularly affecting the back, shoulders, and knees.

Finally, the environment is defined by its substantial Emergency Risks. The presence of high electrical current, molten metal, and volatile process conditions creates a continuous threat of catastrophic failure. The danger of a molten metal splash is a critical burn hazard. Furthermore, the combination of high temperatures and the chemical environment creates the risk of potroom explosions or major fire events. In such scenarios, the sheer scale of the potroom and the rapid onset of danger demand robust, immediate, and highly coordinated emergency response protocols. (aluman_response)

The AI-OHSS addresses this complex safety landscape by creating an intelligent, continuous surveillance loop, moving beyond traditional, reactive safety protocols to a proactive, comprehensive system. (ai_ohs_benefits)

2. The AI-Powered Occupational Health Surveillance System (AI-OHSS)

The AI-OHSS is a four-tiered system designed for continuous data acquisition, analysis, risk prediction, and intervention in the smelting environment.

2.1. System Architecture

Tier	Components	Data Collected	Focus Area
I: Data Acquisition	Smart Personal Protective Equipment (PPE) (for example, helmets, vests), Wearable Biometric Sensors (HR, core temp), Fixed Environmental IoT Sensors ({HF, {SO_2, heat}, Potroom Video Cameras	Biometric data (HR, skin temp, exertion), Gas concentration, Ambient temp, Humidity, Worker location, Posture	Real-time Worker Environment Status
II: Data Aggregation & Storage	Edge Computing Devices, Cloud Server (Data Lake)	Time-series data, Sensor readings, Video feeds (anonymized)	Data Normalization, Secure Storage
III: Intelligent Analytics	Machine Learning (ML) Models (for example, Random Forest, LSTM Neural Networks)	Prediction Models for: Heat stress index, Fatigue detection, Musculoskeletal strain, Gas leak anomaly detection	Predictive OHS Risk Analysis
IV: Intervention & Feedback	Control Room Dashboard, Mobile Alerts, Haptic Feedback (in Smart PPE)	Color-coded risk status, SMS alerts, Real-time location tracking	Proactive Intervention, Worker Alerting

2.2. Novel System Features

A. Multi-Factor Heat Stress Prediction (Thermal Modeling):

The system uses an ML model trained on a combination of individual (HR, core temperature, exertion) and environmental (ambient temp, humidity, radiant heat) factors to calculate a personalized Predicted Heat Strain (PHS) index. This approach incorporates individualized physiological responses and is based on the principles of the human heat balance equation to accurately predict heat storage.\cite{thermal_indices_modeling, heat_stress_collective} If the PHS exceeds a threshold (for example, predicted core temperature approaching 38.0 C, an immediate alert is sent to the worker and supervisor.

B. AI-Driven Biometric and Health Monitoring:

Wearable IoT sensors continuously collect physiological data to inform the ML models. This is critical for continuous monitoring of workers' health and well-being, identifying subtle physiological changes (like elevated heart rate or high skin temperature) that may precede heat exhaustion or fatigue. (ai_ohs_benefits, advancing_ohs_iard)

C. AI-Enhanced Emergency Response:

In the event of an acute incident (, molten metal splash, explosion), the AI-OHSS uses the real-time location data from the smart PPE to provide the Emergency Response Team (ERT) with immediate, accurate location and status of every worker.\cite{aluman_response} The predictive gas exposure

anomaly detection also contributes by identifying high-risk areas before an incident, a key component of a robust risk assessment for smelter operations.(smelter_risk_assessment)

3. The Transformative Utility of AI-OHSS: Enhancing Worker Safety in Smelters

The implementation of the AI-Powered Occupational Health Surveillance System (AI-OHSS) offers significant and transformative utility for the aluminum smelting industry, shifting the paradigm of safety management from reactive response to proactive prevention. The system's primary focus on the high-risk environments of the potroom and casting areas ensures that mitigation strategies are targeted where the dangers are most critical.

3.1 Proactive Mitigation of Acute Hazards

The system's most crucial impact lies in its ability to proactively mitigate acute hazards that threaten a worker's immediate life and safety.

The control of Heat Stress is fundamentally enhanced by the system's personalized Predicted Heat Strain (PHS) model. Instead of relying on general ambient measurements, AI-OHSS uses integrated biometric and environmental data to calculate a worker's physiological response in real time. This allows the system to alert a worker *before* they enter the severe heat stress zone, thus preventing acute heat-related illnesses like heat exhaustion or heat stroke. The personalized alert triggers mandatory rest or relocation, effectively eliminating the hazard at its pre-symptomatic stage.

Furthermore, the system dramatically improves Accident Prevention through real-time fatigue detection. High-consequence tasks in the smelter—such as tapping molten aluminum or operating heavy machinery—demand full concentration. AI-OHSS integrates data from biometrics (like heart rate variability) with video posture and gait analysis to identify patterns indicative of severe fatigue or impaired alertness. This intelligent detection allows for mandatory rest breaks or shift adjustments, directly reducing the risk of human error, which is a leading cause of major accidents in industrial settings.

3.2 Long-Term Health Surveillance

Beyond preventing immediate crises, the AI-OHSS establishes a robust framework for Long-Term Health Surveillance, addressing the chronic occupational diseases that plague the industry.

For Chemical Exposure, the system provides continuous, area-specific, and personalized gas exposure logging for substances like hydrogen fluoride (HF) and sulfur dioxide (SO₂). Unlike periodic monitoring, this granular data allows safety officers and medical personnel to correlate a worker's specific job tasks and duration of exposure with long-term health outcomes. This capability aids significantly in the early detection and prevention of chronic respiratory illnesses linked to persistent, low-level exposure.

In the area of Musculoskeletal Health, the AI-OHSS uses sensors and video analytics to track potentially harmful behaviors. The system generates alerts on improper lifting or sustained awkward postures prevalent in tasks like crust breaking. This feedback guides immediate, corrective ergonomic training, allowing for rapid intervention that reduces the cumulative physical strain.³ By preempting the progression of strain into injury, the system reduces the prevalence of long-term Musculoskeletal Disorders (MSDs), leading to a healthier workforce and lower long-term compensation costs.

3.3 Emergency Response Enhancement

Finally, the AI-OHSS fundamentally transforms emergency preparedness through Emergency Response Enhancement. By providing precise, real-time worker tracking via smart PPE, the system overcomes the challenge of locating personnel in a vast, smoke-filled, or structurally compromised potroom. This capability transforms the effectiveness of the emergency action plan, enabling a dynamically managed, highly targeted evacuation and rescue effort instead of relying on slow, manual search procedures. The ability to locate every worker instantly is invaluable during catastrophic events, reducing search and rescue time and ultimately saving lives. (aluman_response)

4. Conclusion

The AI-Powered Occupational Health Surveillance System (AI-OHSS) represents a significant advancement in OHS for the aluminum industry. By integrating advanced thermal modelling, real-time biometric health monitoring, and AI-enhanced emergency response capabilities, this system moves OHS from reactive reporting to proactive, predictive intervention. The implementation of AI-OHSS is projected to drastically reduce the incidence of both acute accidents (for example, heat stroke, molten metal splash) and chronic occupational diseases in the smelting environment.

References

1. Ismail, M. F.; Abd Wahab, Z.; Alias, M. F.; Zailan, F. F.; Hassan, S. A.; Razak, A. Z. Advancing Occupational Safety with AI-Powered Monitoring Systems: A Conceptual Framework for Hazard Detection and Exposure Control. *World J. Innovation Mod. Technol.* **2025**, *9* (1), 186-213.
2. NIOSH. Heat Stress and Strain Evaluation Among Aluminum Potroom Employees – Texas. *DHHS (NIOSH) Publication No. 2010-101*. National Institute for Occupational Safety and Health, Cincinnati, OH, 2010.
3. Zhang, Z.; Li, Z.; Sun, S.; Wei, W.; Wang, J.; Li, S. Evaluating Heat Stress in Occupational Setting with No Established Safety Standards Using Collective Data from Wearable Biosensors. *J. Phys.: Conf. Ser.* **2025**, *1881* (2), 022019.
4. Epstein, Y.; Moran, D. S. Thermal Indices and Thermophysiological Modeling for Heat Stress. *Compr. Physiol.* **2017**, *7* (2), 173–219.
5. Rizos, T. Risk Assessment and Emergency Response Plan of the Integrated Aluminum Production Plant of ALUMAN S.A. Technical Report, ALUMAN S.A., Athens, Greece, 2023.
6. Luo, X.; Zhou, Y.; Chen, J.; Liu, Z. Community Health Risk Assessment of Primary Aluminum Smelter Emissions. *Environ. Res.* **2014**, *133*, 192-202.
7. Hameed, A.; Hussain, A.; Ma, Y.; Shahzad, A.; Ahmad, M. Artificial Intelligence and Occupational Health and Safety, Benefits and Drawbacks. *BMC Public Health* **2024**, *24*, 1412.