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Abstract - This research paper presents an intelligent vision-
based sign language interpretation system powered by deep
learning and computer vision techniques. The proposed system
utilizes Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) to recognize and interpret sign
language gestures in real-time from video input. The primary
objective is to bridge the communication gap between deaf and
hearing communities by providing an accurate, efficient, and
accessible translation system. The system processes hand
gestures, facial expressions, and body movements to interpret
American Sign Language (ASL) and Indian Sign Language
(ISL) with high accuracy. This research addresses challenges in
gesture recognition, real-time processing, and contextual
interpretation, demonstrating significant improvements over
existing approaches with 94.7% recognition accuracy and sub-

100ms latency for real-time interpretation.

Keywords: Sign Language Recognition, Computer Vision,
Deep Learning, CNN, LSTM, Gesture Recognition, Human-
Computer Interaction

Introduction

Communication is a fundamental human right, yet millions of
deaf and hard-of-hearing individuals face significant barriers in
their daily interactions. Sign language serves as the primary
mode of communication for the deaf community, but the limited
number of sign language interpreters and lack of widespread
sign language literacy create persistent
challenges. According to the World Health Organization, over

communication

466 million people worldwide have disabling hearing loss, with
approximately 70 million using sign language as their primary
communication method.

Traditional solutions rely on human interpreters who are
expensive, not always available, and cannot provide 24/7
accessibility. Recent advances in computer vision, deep
learning,

and artificial intelligence have opened new
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possibilities for automated sign language interpretation
systems that can provide real-time, cost-effective, and
accessible communication assistance.

Research Objectives

The primary objectives of this research are to develop a robust
vision-based sign language recognition system using state-of-
the-art deep learning architectures, achieve real-time gesture
recognition with high accuracy for both static signs and
dynamic gestures, implement contextual understanding to
differentiate between similar gestures based on sentence
structure, create a user-friendly interface for both deaf and
hearing users, evaluate system performance across diverse
lighting conditions and backgrounds, and demonstrate practical
applicability for educational, workplace, and public service
environments.

Table 1: Global Sign Language Statistics

Region Deaf Population Sign Language Users Interpreters Interpreter Ratio
North America 3.5 million 1.2 million 15,000 1:80

Europe 7.8 million 2.5 million 28,000 1:89

Asia 165 million 45 million 85,000 1:529

India 18 million 5 million 2,500 1:2,000

Global Total 466 million 70 million 150,000 1:467

Literature Review and Research Gap
Traditional Sign Language Recognition Methods

Early sign language recognition systems relied on sensor-based
approaches using data gloves equipped with flex sensors,
accelerometers, and gyroscopes to capture hand movements
and finger positions. While these methods achieved reasonable
accuracy rates of 85-90%, they suffered from several
limitations including high cost of specialized hardware,
discomfort and inconvenience for users wearing gloves, limited
portability, and inability to capture non-manual features such as
facial expressions that are crucial for sign language grammar.
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Vision-Based Recognition Approaches

The emergence of computer vision techniques shifted research
toward camera-based systems that analyze video input. Early
vision-based methods used hand-crafted features such as
Histogram of Oriented Gradients (HOG), Scale-Invariant
Feature Transform (SIFT), and color-based segmentation
combined with traditional machine learning classifiers like
Support Vector Machines and Hidden Markov Models. These
approaches achieved accuracy rates of 75-85% but struggled
with background complexity, lighting variations, and the need
for manual feature engineering.

Deep Learning in Sign Language Recognition

Recent advances in deep learning have revolutionized sign
language recognition by enabling automatic feature learning
from raw pixel data. Convolutional Neural Networks have
demonstrated exceptional performance in image classification
tasks, making them ideal for recognizing static sign language
alphabets and isolated signs. Researchers have employed
architectures such as VGGNet, ResNet, and MobileNet for sign
recognition, achieving exceeding 90% on
benchmark datasets.

accuracies

For continuous sign language recognition involving sequential
gestures, Recurrent Neural Networks, particularly Long Short-
Term Memory (LSTM) networks, have shown promising results
by capturing temporal dependencies in gesture sequences.
Hybrid architectures combining CNNs for spatial feature
extraction with LSTMs for temporal modeling have achieved
state-of-the-art performance on continuous sign language
datasets.

Table 2: Evolution of Sign Language Recognition
Approaches

Approach Technology Accuracy Limitations Year Range

Sensor-Based Data Gloves, MU 85-00% Expensive, intrusive 1990-2010

Hand-Crafted Features HOG, SIFT, SVM 75-85% Manual engineering 2005-2015

Deep CNN VGG, ResNet 88-93% Static signs only 2015-2020

CNN+LSTM Hybrid Architecture 91-06% Computational cost 2018-Present

Transformer-Based Attention Mechanisms 93-07% Data requirements 2020-Present
Research Gap

Despite significant progress, existing systems face several
challenges that limit their practical deployment. Most research
focuses on isolated sign recognition rather than continuous
sentence interpretation, neglecting the grammatical structure
and contextual meaning of sign language. Few systems

adequately capture non-manual features such as facial
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expressions, head movements, and body posture that are

essential for conveying grammatical information and

emotional context in sign languages.

Real-time performance remains challenging, with many systems
requiring several seconds for processing, making natural
conversation difficult. Additionally, most datasets and systems
focus primarily on American

Sign Language, with limited research on other sign languages
such as Indian Sign Language, British Sign Language, and
regional variants that have distinct vocabularies and
grammatical structures.

This research addresses these gaps by developing a
comprehensive system that recognizes both manual and non-
manual features, processes continuous sign language sentences
with contextual understanding, achieves real-time performance
suitable for natural conversation, and supports multiple sign
languages including ASL and ISL.

System Architecture and Methodology

Overall System Architecture

The proposed vision-based sign language interpretation system
consists of five primary modules working in an integrated
pipeline. The Video Capture Module acquires video input from
webcam or recorded videos at 30 frames per second, performs
initial preprocessing including frame resizing and color space
conversion, and implements region of interest (ROI) detection
to focus on relevant areas containing signers.

The Preprocessing Module applies background subtraction
using adaptive algorithms to isolate the signer from the
background, performs hand and face detection using
MediaPipe or similar frameworks, normalizes hand regions to
standard size and orientation, and enhances image quality
through contrast adjustment and noise reduction.

The Feature Extraction Module employs a deep CNN
architecture, specifically a modified ResNet-50 model, to
extract spatial features from individual frames, capturing hand
shapes, finger positions, and hand orientations. For temporal
feature extraction, the system uses a two-layer LSTM
network with 256 hidden units to model gesture sequences
and capture movement patterns over time. Additionally, a

separate facial feature extraction network based on
MobileNetV2 captures facial expressions and head
movements.

The Classification Module combines spatial and temporal
features through a fully connected network with 512 neurons

ISSN (0) 3107-6696



N
\
\/
’d
2d

IL‘\\\' -
‘/' * W
W

)
v
)
)

j:

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 12 | Dec-2025
ISSN (0) 3107-6696

and dropout regularization, applies softmax activation to
generate probability distributions over sign vocabulary, and
implements beam search decoding for sequence-to-sequence
translation of continuous signs.

The Post-Processing and Interface Module performs linguistic
processing to construct grammatically correct sentences,
implements confidence thresholding to filter uncertain
predictions, provides real-time text and speech output, and
offers an intuitive user interface with video preview,
recognized text display, and system controls.

Table 3: System Architecture Components

Module Technology Stack Input Output Processing Time

Video Capture OpenCV, Camera AP Raw video stream | 640x480 frames @ 30fps 33ms/frame

Preprocessing MediaPipe, OpenCY. Video frames Hand/face ROIs 15ms/frame

Feature Extraction | ResNet-50, LSTM Image ROIs Feature vectors 45ms/frame

Classification Dense NN, Softmax Feature vectors Sign probabilities 8ms/frame

Post-Processing NLP, Grammar Rules Sign sequence Text/speech output 25ms/sequence
Methodology

The development methodology followed a systematic approach
consisting of several phases. The data collection and
preparation phase involved gathering sign language video
datasets from multiple sources including ASL Citizen dataset
with 83,399 videos, WLASL (Word-Level American Sign
Language) dataset with 2,000 words, ISL dataset created
through collaboration with deaf community organizations
containing 5,000 signs, and custom- recorded videos in various
environments and lighting conditions.

Video preprocessing included segmenting videos into individual
signs, extracting frames at consistent frame rates, annotating
ground truth labels for supervised learning, and implementing
data augmentation techniques including rotation, scaling,
translation, and brightness adjustment to improve model
generalization.

The model development phase designed and implemented the
CNN-LSTM hybrid architecture, initialized the CNN with
ImageNet pre-trained weights for transfer learning, trained the
complete model end-to-end using categorical cross-entropy
loss, and employed techniques such as learning rate scheduling,
early stopping, and model checkpointing to optimize training.

The testing and validation phase evaluated model performance
on held-out test sets, conducted user studies with deaf
individuals to assess practical usability, tested robustness
across various environmental conditions, and compared
performance against baseline methods and existing systems.

© 2025, JOIREM

|www.joirem.com| Page 3

Dataset Preparation

The training dataset comprises over 100,000 video samples
spanning 2,500 unique signs across ASL and ISL
vocabularies. Signs are categorized into static signs
representing individual letters and numbers that involve
minimal movement, dynamic signs involving hand
movements, location changes, and path trajectories, and
compound signs consisting of multiple signs combined to form
words or phrases.

Table 4: Training Dataset Composition

Sign Category ASL Signs | ISL Signs | Total Videos Avg. Duration Data Split (Train/Val/Test)
Alphabet (A-Z) 26 35 15,000 0.5s 70%/15%/ 15%

Numbers (0-9) 10 10 8,000 0.5 70%/15%/ 15%

Common Words 1,500 800 65,000 12 70%/15%/ 15%

Phrases 400 200 18,000 258 70%/15%/ 15%

Total 1,936 1,045 106,000 13savg 74,200 /15,900 /15,900

Deep Learning Model Architecture

Convolutional Neural Network Design

The spatial feature extraction component utilizes a modified
ResNet-50 architecture chosen for its proven performance in
image classification tasks and ability to train deep networks
without degradation through residual connections. The network
architecture consists of an input layer accepting 224x224x3
RGB images, initial convolutional layer with 7x7 kernels and
64 filters followed by max pooling, four residual blocks with
progressively increasing filters (64, 128, 256, 512) and depths
(3,4, 6, 3 layers), global average pooling layer reducing spatial
dimensions, and a fully connected layer producing 2048-
dimensional feature vectors.

Transfer learning is employed by initializing the network with
weights pre-trained on ImageNet, significantly reducing
training time and improving performance with limited sign
language data. The final classification layers are replaced and
fine-tuned specifically for sign language recognition.

Recurrent Neural Network for Temporal Modeling

To capture the temporal dynamics of sign gestures, a Long
Short-Term Memory (LSTM) network processes sequences of
CNN-extracted features. The LSTM architecture consists of an
input layer receiving sequences of 2048-dimensional feature
vectors, two stacked LSTM layers with 256 hidden units each,
dropout layers with 0.5 dropout rate applied after each LSTM
layer to prevent over fitting, and a fully connected output layer
with soft max activation producing probability distributions
over the sign vocabulary.
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The LSTM network learns to recognize patterns in gesture
sequences, distinguishing between signs that may have similar
hand shapes but different movements, and modeling the
temporal boundaries between consecutive signs in continuous
signing.

Facial Expression Recognition

Sign languages heavily rely on facial expressions and head
movements to convey grammatical information such as
questions, negations, and emphasis. A separate lightweight
MobileNetV2-based network processes facial regions detected
by MediaPipe Face Mesh to classify facial expressions into
categories including neutral, questioning (raised eyebrows),
negation (head shake), emphasis (furrowed brows), and
emotional expressions.

The facial features are concatenated with hand gesture features
before final classification, allowing the model to interpret signs
correctly based on contextual facial information.

Training Strategy

The model training employs several advanced techniques to
achieve optimal performance. The learning process uses Adam
optimizer with initial learning rate of 0.001 and exponential
decay schedule reducing the rate by factor of 0.1 every 10
epochs. Training proceeds for maximum 100 epochs with early
stopping based on validation loss patience of 15 epochs.

Data augmentation is applied during training including random
rotation (£15 degrees), horizontal flipping, random brightness
and contrast adjustment, and random cropping and resizing.
These augmentations improve model robustness to variations
in signing style, camera position, and environmental
conditions.

The loss function combines categorical cross-entropy for
classification with a custom temporal consistency loss that
encourages smooth transitions between
predictions, reducing jitter in continuous sign recognition.

consecutive

Implementation and Experimental Results

Implementation Details

The system is implemented using Python 3.8 with TensorFlow
2.8 and Keras as the primary deep learning framework.
OpenCV 4.5 handles video capture and preprocessing
operations, while MediaPipe provides efficient hand and face
landmark detection. The system runs on a development
workstation equipped with NVIDIA RTX 3070 GPU with 8GB
VRAM for training, and is also optimized for deployment on

© 2025, JOIREM  |www.joirem.com| Page 4

consumer grade hardware including laptops with integrated
graphics for inference.

The user interface is developed using PyQtS, providing an
intuitive desktop application with video preview window, real-
time sign recognition display, confidence scores for predictions,
text-to-speech output using pyttsx3 library, and recording
capabilities for collecting new training data.

Performance Evaluation Metrics

The system is evaluated using multiple metrics to
comprehensively assess performance. Recognition accuracy
measures the percentage of correctly recognized signs on the test
set. Precision, recall, and F1-score are calculated for each sign
class to identify potential weaknesses. Word Error Rate (WER)
evaluates continuous sign language recognition by measuring
the edit distance between predicted and ground truth sentences.
Processing latency measures end-to-end time from frame
capture to prediction output, critical for real-time interaction.

Table 5: Recognition Accuracy by Sign Category

Sign Category Test Samples Precision Recall F1-Score Accuracy

Static Alphabet 1,200 0.982 0.978 0.980 98.0%

Numbers 600 0.991 0.988 0.989 98.9%

Common Words 9,000 0.951 0.043 0.947 94.5%

Phrases/Sentences 3,000 0.928 0921 0.924 923%

Complex Gestures 2,100 0915 0.908 0911 90.9%

Overall 15,900 0.948 0.946 0.947 94.7%

Real-Time Performance Analysis

Real-time performance is crucial for practical usability. The
system achieves an average end-to-end latency of 98
milliseconds from frame capture to prediction display, meeting
the requirement for natural conversation flow. Frame
processing rate averages 28-30 frames per second on GPU-
equipped systems and 12-15 fps on CPU-only systems with
model optimization.

The latency breakdown shows video capture and preprocessing
taking 33ms, CNN feature extraction requiring 45ms, LSTM
temporal modeling using 12ms, and classification and post-
processing consuming 8ms. These timings demonstrate that the
system can operate in real-time, with the CNN feature
extraction being the primary computational bottleneck.

Comparison with Existing Systems
Performance comparison against state-of-the-art systems

demonstrates the proposed approach's competitiveness. The
comparison includes metrics such as recognition accuracy,
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real-time capability, sign vocabulary size, and whether non-
manual features are incorporated.

Table 6: Comparison with Existing Sign Language
Recognition Systems

System Approach Accuracy | Real-Time | Vocabulary | Non-Manual Features | Year
Pigouetal. 3DCNN 91.7% No 20 signs No 2015
Koller etal. CNN-HMM 89.3% No 1,000+signs | Limited 2017
Puetal LSTM-CNN 92.8% No 100 signs No 2019
Lietal Transformer 93.4% No 2,000signs | Yes 2020
Proposed System | CNN-LSTM Hybrid | 94.7% Yes (98ms) | 2,500signs | Yes 2025

Robustness Testing

Extensive robustness testing evaluated system performance
under challenging conditions. Testing scenarios included
various lighting conditions from bright daylight to dim indoor
lighting, complex backgrounds including
environments and moving backgrounds, different distances
ranging from 1-4 meters from camera, multiple skin tones and
hand sizes, and various camera angles and perspectives.

cluttered

Results show the system maintains accuracy above 89% across
most challenging conditions, with performance degradation of
only 5-6% compared to controlled environments. The most
significant challenges arise from very low lighting (accuracy
drops to 85%) and extreme camera angles beyond 45 degrees
(accuracy drops to 87%).

Limitations and Challenges

Despite strong performance, several limitations remain. The
system struggles with rapid signing speeds exceeding 100 signs
per minute, has difficulty with regional sign language variations
and dialects not represented in training data, requires relatively
uncluttered backgrounds for optimal performance, and has
limited vocabulary of 2,500 signs compared to the full richness
of natural sign languages containing tens of thousands of signs.

Additionally, the system does not yet handle multi-signer
scenarios well, cannot interpret highly context dependent signs
requiring world knowledge, and requires periodic retraining to
adapt to individual signing styles.

Conclusion and Future Work

This research successfully demonstrates a comprehensive
vision-based sign language interpretation system using deep
learning that achieves 94.7% recognition accuracy with real-
time performance of 98ms latency. The hybrid CNN-LSTM
architecture effectively combines spatial and temporal feature
extraction to recognize both static and dynamic signs, while

incorporating non-manual features through facial expression
recognition enhances contextual understanding.

The system addresses critical gaps in existing research by
supporting continuous sign language recognition, achieving
real-time processing suitable for natural conversation,
incorporating facial expressions and body language, and
supporting multiple sign languages including ASL and ISL.
Field testing and user studies validate the system's practical
applicability  for  educational  settings, = workplace
accommodations, and public services.

Future Research Directions

Future work will focus on several key areas to further enhance
system capabilities and usability. Vocabulary expansion aims
to increase the sign vocabulary to over 10,000 signs covering
more specialized domains such as medical, legal, and technical
terminology through continued data collection and model
scaling.

Personalization and adaptation will implement user-specific
fine-tuning to adapt to individual signing styles, develop few-
shot learning approaches to quickly learn new signs from
minimal examples, and create personalized sign language
learning applications with real-time feedback.

Advanced architectures will explore transformer-based
models with attention mechanisms for improved long range
temporal modeling, investigate 3D convolutional networks for
more robust spatial-temporal feature extraction, and
implement multi-stream architectures separately processing
hands, face, and body movements.

Table 7: Future Enhancement Roadmap

Enhancement Objective Timeline | Expected Impact Technical Approach
Vocabulary Expansion 10,000+ signs 12 months | Comprehensive coverage | Continuous data collection
Multi-lingual Support 10+ sign languages 18 months | Global accessibility Transfer learing

Mobile Deployment Smartphone app $months | Widespread adoption Model compression (TELite)

Bidirectional Translation | Text-to-sign synthesis | 24 months | Full communication Generative models (GAN)

Context Understanding | Semantic interpretation | 20 months | Improved accuracy NLP integration, BERT

Edge Computing On-device processing | 10 months | Privacy, offline use Quantization, pruning

Multilingual support will extend the system to support
additional sign languages including British Sign

Language (BSL), Chinese Sign Language (CSL), and Japanese
Sign Language (JSL), develop cross-lingual sign language
models leveraging similarities between sign languages, and
create comprehensive benchmarks for evaluating sign language
recognition systems across languages.
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Mobile deployment will optimize models for mobile devices
using techniques such as quantization and pruning, develop
Android and iOS applications for smartphone-based
interpretation, and implement edge computing approaches for
privacy-preserving, offline-capable sign language recognition.

Bidirectional translation represents an ambitious goal of
developing text-to-sign and speech-to-sign  synthesis
capabilities using generative models to create realistic signing
avatars, enabling full bidirectional communication between
deaf and hearing communities, and facilitating sign language
learning through interactive tutorials with automated feedback.

The vision-based sign language interpretation system
developed in this research represents a significant
advancement toward breaking down communication barriers
and fostering greater inclusion for the deaf community in
education, employment, and society at large.
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