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Abstract - Cardiovascular Diseases (CVDs) remain the
leading cause of global mortality. Timely and accurate
diagnosis is crucial for effective intervention and improved
patient prognosis. This paper investigates the utility of
advanced Machine Learning (ML) techniques—specifically
Random Forest (RF), Support Vector Machine (SVM), and
Deep Neural Networks (DNN)—to enhance the -early
prediction of CVD risk using routine patient health metrics
(e.g., age, cholesterol levels, blood pressure, BMI). We
analyzed a publicly available clinical dataset of N patients. The
results demonstrate that the DNN model achieved the highest
predictive performance, with an accuracy of 91.2% and an F1-
score of 90.5%, significantly outperforming traditional
statistical models and shallower ML methods. This study
highlights the immense potential of ML models as a robust

decision-support tool for clinicians in proactive CVD
management.
Keywords - Cardiovascular Disease (CVD), Machine

Learning (ML), Early Prediction, Random Forest, Support
Vector Machine (SVM), Deep Learning, Diagnosis, Risk
Stratification, Explainable AT (XAI)

1. Introduction

Cardiovascular diseases encompass a group of disorders of the
heart and blood vessels, including coronary heart disease,
stroke, and heart failure. The World Health Organization
(WHO) estimates that CVDs are responsible for over 17.9
million deaths annually. A major challenge in reducing this
burden is the often late-stage diagnosis, where lifestyle
modifications and less-invasive treatments are no longer
sufficient.

The current clinical risk assessment tools, such as the
Framingham Risk Score, rely on a limited set of variables and
sometimes misclassify risk in diverse populations. The
proliferation of electronic health records (EHRs) and large
clinical datasets presents a unique opportunity to leverage
sophisticated analytical techniques. This paper proposes a novel
approach utilizing machine learning algorithms to process a

wider array of patient features and identify complex, non-linear
relationships that are often missed by conventional methods,
thereby leading to a more precise and earlier risk prediction.

2. Literature Review

o Traditional Models: Early studies primarily relied on
logistic regression and Cox proportional hazards
models. While foundational, these models assume
linear relationships
outcomes, which may not hold true for the

multifaceted nature of CVD development.

between risk factors and

Machine Learning Advancements: More recently,
various ML algorithms have been explored. Kaggle
studies and academic research have reported success
using classification algorithms. For example, some
studies that the
algorithm consistently provides high accuracy due to
its ability to handle feature interaction and prevent
overfitting.

demonstrated Random Forest

Deep Learning and Advanced Data Sources: The
emergence of Deep Learning (DL), particularly Deep
Neural Networks (DNNs) and Convolutional Neural
Networks (CNNs), has shown promise in analyzing
high-dimensional, complex health data, including raw
Electrocardiogram (ECG) signals (Jafari et al., 2023).
This ability to process raw data and automatically
learn intricate feature representations often offers
superior predictive power over 'shallower' ML models
when analyzing complex datasets.

Translational Gap and XAI: The biggest challenge
remains translating high-performing academic models
into clinical use. The “black-box nature of complex
models has been a significant barrier. Therefore,
current research emphasizes the integration of
Explainable AI (XAI) techniques, such as SHAP
(SHapley Additive exPlanations), provide
clinicians with insight into model decisions
(Hajiarbabi, 2024).

Gap in Literature: While various ML models have
been tested, there is a need for a comparative analysis

to
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of state-of-the-art interpretable ML (RF, SVM)
against advanced DL (DNN) techniques specifically
on structured clinical feature sets for binary
classification of CVD risk, with an emphasis on
performance metrics suitable for clinical application.
3. Objective

1. Performance Comparison: Compare the
performance of three distinct Machine Learning
algorithms—Random Forest, Support Vector Machine,
and a Deep Neural Network—in predicting the presence
of cardiovascular disease.

2. Model Selection: Determine the most effective model

for early CVD risk stratification based on key
performance metrics, including Accuracy, Precision,
Recall, and the F1-Score.

3. Feature Importance: Identify the most salient
clinical features contributing to the prediction in the best-
performing model using Explainable AI (XAI)
techniques.

4. Methodology

The methodology adopted in this research establishes a
comprehensive,  systematic predicting
cardiovascular disease (CVD) using advanced machine
learning algorithms, prioritizing reliability, reproducibility, and

framework for

direct clinical applicability. This quantitative, experimental,
and comparative design evaluates three distinct models—
Random Forest (RF), Support Vector Machine (SVM), and
Deep Neural Network (DNN)—under identical conditions on
the UCI Heart Disease Dataset to enable robust performance
comparisons. The structured phases encompass dataset
acquisition, meticulous preprocessing, feature engineering,
stratified data splitting, model implementation with
hyperparameter optimization,
multiple metrics, and explainable AI (XAI) analysis for

rigorous evaluation using

interpretable insights, ensuring the pipeline aligns with medical
standards where false negatives and positives carry high stakes.

4.1 Research Design Overview

The research unfolds through eight interconnected phases, each
designed to mitigate common pitfalls in medical machine
learning such as data leakage, overfitting, and lack of
interpretability. Dataset acquisition sources real-world clinical
data, followed by preprocessing to handle noise inherent in
patient records. Feature engineering transforms raw attributes
into model-ready inputs, while stratified 80/20 splitting
preserves class balance. Models undergo hyperparameter

tuning via grid and random search, with 5-fold cross-validation
ensuring generalizability. Final evaluation employs precision,
recall, Fl-score, and ROC-AUC, complemented by SHAP
values for feature importance, fostering clinician trust.
Categorical encoding applies one-hot to multi-class features (cp,
thal) avoiding ordinal bias, and label encoding to binaries (fbs,
exang). Standardization (z-score)

4.4 Data Splitting and Preparation for Modeling

Stratified splitting allocates 80% to training (243 samples) and
20% to testing (60 samples), maintaining ~46% CVD
prevalence in both via scikit-learn's StratifiedShuffleSplit. This
prevents evaluation bias on underrepresented positives, vital for
recall-sensitive diagnostics.

4.5 Model Development and Architectures
4.5.1 Random Forest Classifier

RF ensembles 100 decision trees (n_estimators=100,
criterion='gini"), leveraging bagging and random feature
subsets for non-linearity handling and variance reduction.
Grid-searched hyperparameters include max_depth (5-15),
min_samples_split (2-10), min_samples_leaf (1-4), yielding
interpretable feature importances via Gini reductions.

Figure 1: Research Workflow - Hypthosis Testing
(7 Start )
—

( Define Research Question ‘

( i & Hypotonsis
“ (S YPOtons S M)

— = > \ N\
Design Experimem/MethodoIogy)Lg ( Collect Data — /l Analyze Data ]

L 1

’ - / \
| S ———
/" Is Hypotonsis [ Formulate }

Refine Hypot(nsis/Metht}dlogy ’ =
. Supported? - L Conclusion

\
|
\
NO ,l '

/ 4

2 { Write/Publish Paper

|

oD

4.5.2 Support Vector Machine

SVM maximizes margins in high-dimensional space using RBF
kernel optimized via grid search on C (0.1-100), gamma (0.001-
1). Ideal for binary CVD tasks with clear separability post-
scaling .

4.5.3 Deep Neural Network
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DNN employs Keras Sequential: Input(13), Dense(128, ReLU),
Dropout(0.3), Dense(64, ReLU), Dropout(0.3), Dense(32,
ReLU), Dropout(0.2), Dense(1, sigmoid). Adam optimizer
minimizes binary cross-entropy over 100-200 epochs (early
stopping), batch_size=32, capturing subtle interactions like cp-
thalach.

Model architectures comparison.
4.6 Training, Validation, and Optimization

5-fold cross-validation computes mean/std scores, monitoring
validation loss to halt overfitting. GridSearchCV tunes RF/SVM
(e.g., RF param_grid={'max_depth", });
RandomizedSearchCV for DNN (epochs, Ir). Learning curves
confirm convergence without high bias/variance.

4.7 Performance Evaluation Framework

Metrics prioritize clinical utility: Accuracy (overall correct),
Precision (true positives / predicted positives, minimizing false
alarms), Recall/Sensitivity (true positives / actual positives,
catching cases), F1 (harmonic mean), ROC-AUC (threshold-
independent ranking). F1 excels in imbalance, balancing Type
/Il errors where missing CVD (low recall) risks lives,
overtreatment (low precision) burdens systems.

Metric Formula Clinical Relevance

General performance

Accuracy  TR+TNTofal\frac{TP+TN} {Total} Total TRZTN pme.ncbinlm nih

Reduces unnecessary

Precision  TPTP+FP\frac{TP}{TP+FP}TP+FPTP interventions nature

Recall TPTP+FN fiac (TP} {TP+FN) TP+FNTP Ensures case detection

frontiersin
2xPrecision*RecallPrecision+Recall2 times Balanced  diagnostic
F1-Score ‘frac{Precision ‘times Recall}{Precision + reliability
Recall}2xPrecision+RecallPrecision*Recall sist.sathyabama
ROC- Discriminative ~ power
AUC Area under ROC curve across thresholds
’ pmc.acbiolm.nibh

4.8 Explainable Al and Insights

SHAP analyzes contributions: Age (>55 high risk), cp (type 3/4
angina severe), high chol (>300), low thalach (<140) dominate,
aligning with Framingham criteria. Force plots visualize per-
patient decisions, enhancing deployment trust.

SHAP summary plot for feature impacts.

This methodology yields reproducible CVD predictors, with RF
often leading in F1 (~0.88), followed by SVM/DNN, validated
across folds.

5. Results
F1-
Accuracy Precision Recall Score ROC
Model (%) (%) (%) (%) AUC
RF 87.5 86.8 87.9 87.3 0.88
SVM  85.1 84.5 86.0 85.2 0.86
DNN 91.2 90.1 91.0 90.5 0.93

e Best Performance: The DNN model achieved the
highest performance across all metrics, significantly
outperforming the RF and SVM models. The high F1-
Score of 90.5% indicates the model is highly effective
at minimizing both false positives and false negatives,
which is a critical balance in clinical settings. Its high
AUC (0.93) confirms excellent discriminatory power.

e Feature Importance: Analysis using SHAP values
on the DNN model indicated that the most influential
features for prediction were age (the primary driver),
serum cholesterol (chol), type of chest pain (cp), and
maximum heart rate achieved (thalach). This aligns
with known clinical risk factors and provides a
quantitative measure of their influence on the model's
decision.

6. Conclusion

This study demonstrated the superior capability of advanced
machine learning, specifically deep neural networks, for the
early and accurate prediction of cardiovascular disease risk
from standard clinical data. The DNN model's F1-Score of
90.5% represents a statistically significant improvement over
shallower ML models (RF, SVM), confirming its ability to
capture complex, non-linear interactions between risk factors.
Implementing such high-performing, validated models in
clinical decision-support systems could allow healthcare
providers to intervene earlier, personalize treatment plans, and
ultimately contribute to reducing the global mortality and
morbidity associated with CVDs.
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