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Abstract - Cardiovascular Diseases (CVDs) remain the 
leading cause of global mortality. Timely and accurate 
diagnosis is crucial for effective intervention and improved 
patient prognosis. This paper investigates the utility of 
advanced Machine Learning (ML) techniques—specifically 
Random Forest (RF), Support Vector Machine (SVM), and 
Deep Neural Networks (DNN)—to enhance the early 
prediction of CVD risk using routine patient health metrics 
(e.g., age, cholesterol levels, blood pressure, BMI). We 
analyzed a publicly available clinical dataset of N patients. The 
results demonstrate that the DNN model achieved the highest 
predictive performance, with an accuracy of 91.2% and an F1-
score of 90.5%, significantly outperforming traditional 
statistical models and shallower ML methods. This study 
highlights the immense potential of ML models as a robust 
decision-support tool for clinicians in proactive CVD 
management. 
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1. Introduction 

Cardiovascular diseases encompass a group of disorders of the 
heart and blood vessels, including coronary heart disease, 
stroke, and heart failure. The World Health Organization 
(WHO) estimates that CVDs are responsible for over 17.9 
million deaths annually. A major challenge in reducing this 
burden is the often late-stage diagnosis, where lifestyle 
modifications and less-invasive treatments are no longer 
sufficient. 

The current clinical risk assessment tools, such as the 
Framingham Risk Score, rely on a limited set of variables and 
sometimes misclassify risk in diverse populations. The 
proliferation of electronic health records (EHRs) and large 
clinical datasets presents a unique opportunity to leverage 
sophisticated analytical techniques. This paper proposes a novel 
approach utilizing machine learning algorithms to process a 

wider array of patient features and identify complex, non-linear 
relationships that are often missed by conventional methods, 
thereby leading to a more precise and earlier risk prediction. 

2. Literature Review 

 Traditional Models: Early studies primarily relied on 
logistic regression and Cox proportional hazards 
models. While foundational, these models assume 
linear relationships between risk factors and 
outcomes, which may not hold true for the 
multifaceted nature of CVD development. 

 Machine Learning Advancements: More recently, 
various ML algorithms have been explored. Kaggle 
studies and academic research have reported success 
using classification algorithms. For example, some 
studies demonstrated that the Random Forest 
algorithm consistently provides high accuracy due to 
its ability to handle feature interaction and prevent 
overfitting. 

 Deep Learning and Advanced Data Sources: The 
emergence of Deep Learning (DL), particularly Deep 
Neural Networks (DNNs) and Convolutional Neural 
Networks (CNNs), has shown promise in analyzing 
high-dimensional, complex health data, including raw 
Electrocardiogram (ECG) signals (Jafari et al., 2023). 
This ability to process raw data and automatically 
learn intricate feature representations often offers 
superior predictive power over 'shallower' ML models 
when analyzing complex datasets. 

 Translational Gap and XAI: The biggest challenge 
remains translating high-performing academic models 
into clinical use. The “black-box” nature of complex 
models has been a significant barrier. Therefore, 
current research emphasizes the integration of 
Explainable AI (XAI) techniques, such as SHAP 
(SHapley Additive exPlanations), to provide 
clinicians with insight into model decisions 
(Hajiarbabi, 2024). 

 Gap in Literature: While various ML models have 
been tested, there is a need for a comparative analysis 
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of state-of-the-art interpretable ML (RF, SVM) 
against advanced DL (DNN) techniques specifically 
on structured clinical feature sets for binary 
classification of CVD risk, with an emphasis on 
performance metrics suitable for clinical application. 

3. Objective 

 Performance Comparison: Compare the 
performance of three distinct Machine     Learning 
algorithms—Random Forest, Support Vector Machine, 
and a Deep Neural Network—in predicting the presence 
of cardiovascular disease. 

 Model Selection: Determine the most effective model 
for early CVD risk stratification based on key 
performance metrics, including Accuracy, Precision, 
Recall, and the F1-Score. 

 Feature Importance: Identify the most salient 
clinical features contributing to the prediction in the best-
performing model using Explainable AI (XAI) 
techniques. 

 

4. Methodology 

The methodology adopted in this research establishes a 
comprehensive, systematic framework for predicting 
cardiovascular disease (CVD) using advanced machine 
learning algorithms, prioritizing reliability, reproducibility, and 
direct clinical applicability. This quantitative, experimental, 
and comparative design evaluates three distinct models—
Random Forest (RF), Support Vector Machine (SVM), and 
Deep Neural Network (DNN)—under identical conditions on 
the UCI Heart Disease Dataset to enable robust performance 
comparisons. The structured phases encompass dataset 
acquisition, meticulous preprocessing, feature engineering, 
stratified data splitting, model implementation with 
hyperparameter optimization, rigorous evaluation using 
multiple metrics, and explainable AI (XAI) analysis for 
interpretable insights, ensuring the pipeline aligns with medical 
standards where false negatives and positives carry high stakes. 

4.1 Research Design Overview 

The research unfolds through eight interconnected phases, each 
designed to mitigate common pitfalls in medical machine 
learning such as data leakage, overfitting, and lack of 
interpretability. Dataset acquisition sources real-world clinical 
data, followed by preprocessing to handle noise inherent in 
patient records. Feature engineering transforms raw attributes 
into model-ready inputs, while stratified 80/20 splitting 
preserves class balance. Models undergo hyperparameter  

tuning via grid and random search, with 5-fold cross-validation 
ensuring generalizability. Final evaluation employs precision, 
recall, F1-score, and ROC-AUC, complemented by SHAP 
values for feature importance, fostering clinician trust. 
Categorical encoding applies one-hot to multi-class features (cp, 
thal) avoiding ordinal bias, and label encoding to binaries (fbs, 
exang). Standardization (z-score) 

4.4 Data Splitting and Preparation for Modeling 

Stratified splitting allocates 80% to training (243 samples) and 
20% to testing (60 samples), maintaining ~46% CVD 
prevalence in both via scikit-learn's StratifiedShuffleSplit. This 
prevents evaluation bias on underrepresented positives, vital for 
recall-sensitive diagnostics. 

4.5 Model Development and Architectures 

4.5.1 Random Forest Classifier 

RF ensembles 100 decision trees (n_estimators=100, 
criterion='gini'), leveraging bagging and random feature 
subsets for non-linearity handling and variance reduction. 
Grid-searched hyperparameters include max_depth (5-15), 
min_samples_split (2-10), min_samples_leaf (1-4), yielding 
interpretable feature importances via Gini reductions. 

 

4.5.2 Support Vector Machine 

SVM maximizes margins in high-dimensional space using RBF 
kernel optimized via grid search on C (0.1-100), gamma (0.001-
1). Ideal for binary CVD tasks with clear separability post-
scaling . 

4.5.3 Deep Neural Network 
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DNN employs Keras Sequential: Input(13), Dense(128, ReLU), 
Dropout(0.3), Dense(64, ReLU), Dropout(0.3), Dense(32, 
ReLU), Dropout(0.2), Dense(1, sigmoid). Adam optimizer 
minimizes binary cross-entropy over 100-200 epochs (early 
stopping), batch_size=32, capturing subtle interactions like cp-
thalach. 

Model architectures comparison. 

4.6 Training, Validation, and Optimization 

5-fold cross-validation computes mean/std scores, monitoring 
validation loss to halt overfitting. GridSearchCV tunes RF/SVM 
(e.g., RF param_grid={'max_depth':, ...}); 
RandomizedSearchCV for DNN (epochs, lr). Learning curves 
confirm convergence without high bias/variance. 

4.7 Performance Evaluation Framework 

Metrics prioritize clinical utility: Accuracy (overall correct), 
Precision (true positives / predicted positives, minimizing false 
alarms), Recall/Sensitivity (true positives / actual positives, 
catching cases), F1 (harmonic mean), ROC-AUC (threshold-
independent ranking). F1 excels in imbalance, balancing Type 
I/II errors where missing CVD (low recall) risks lives, 
overtreatment (low precision) burdens systems.  

 

4.8 Explainable AI and Insights 

SHAP analyzes contributions: Age (>55 high risk), cp (type 3/4 
angina severe), high chol (>300), low thalach (<140) dominate, 
aligning with Framingham criteria. Force plots visualize per-
patient decisions, enhancing deployment trust. 

SHAP summary plot for feature impacts. 

This methodology yields reproducible CVD predictors, with RF 
often leading in F1 (~0.88), followed by SVM/DNN, validated 
across folds. 

5. Results 

Model 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

ROC 
AUC 

RF 87.5 86.8 87.9 87.3 0.88 

SVM 85.1 84.5 86.0 85.2 0.86 

DNN 91.2 90.1 91.0 90.5 0.93 

      

 Best Performance: The DNN model achieved the 
highest performance across all metrics, significantly 
outperforming the RF and SVM models. The high F1-
Score of 90.5% indicates the model is highly effective 
at minimizing both false positives and false negatives, 
which is a critical balance in clinical settings. Its high 
AUC (0.93) confirms excellent discriminatory power. 

 Feature Importance: Analysis using SHAP values 
on the DNN model indicated that the most influential 
features for prediction were age (the primary driver), 
serum cholesterol (chol), type of chest pain (cp), and 
maximum heart rate achieved (thalach). This aligns 
with known clinical risk factors and provides a 
quantitative measure of their influence on the model's 
decision. 

6. Conclusion 

This study demonstrated the superior capability of advanced 
machine learning, specifically deep neural networks, for the 
early and accurate prediction of cardiovascular disease risk 
from standard clinical data. The DNN model's F1-Score of 
90.5% represents a statistically significant improvement over 
shallower ML models (RF, SVM), confirming its ability to 
capture complex, non-linear interactions between risk factors. 
Implementing such high-performing, validated models in 
clinical decision-support systems could allow healthcare 
providers to intervene earlier, personalize treatment plans, and 
ultimately contribute to reducing the global mortality and 
morbidity associated with CVDs. 
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