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Abstract - The Military Object Detection System
represents a significant advancement in the application of
artificial intelligence for defense and surveillance applications.
This research presents the development and deployment of a
robust, automated solution utilizing YOLOV7 (You Only Look
Once, version 7) architecture for detecting military bases and
related objects across diverse media formats including static
images, recorded videos, and real-time webcam streams. The
system is designed to operate securely in offline environments,
ensuring strict data privacy and compliance with defense
protocols. The project encompasses data preparation with 13
military object classes (Aircraft, Camouflage, Drone, Fire,
Grenade, Hand Gun, Knife, Military- Vehicle, Missile, Pistol,
Rifle, Smoke, and Soldier), comprehensive model training
utilizing state-of-the-art deep learning techniques, and
deployment across multiple input modalities. Performance
evaluation demonstrates exceptional results with mean Average
Precision (mAP) at 0.5 intersection over union reaching 86.9%
and precision at 90.1%, indicating strong generalization and
reliability. The system delivers real-time detection at over 30
frames per second, making it highly suitable for operational
surveillance and threat assessment. This paper presents the
complete methodology, architectural details, experimental
results, and operational deployment strategies for a practical
deep learning-based military object detection system

Keywords - YOLOV7, object detection, military applications,
deep learning, real-time detection, surveillance, convolutional
neural networks, automation

Introduction

The integration of artificial intelligence and machine learning
into defense and surveillance systems has become increasingly
critical for modern security operations. Object detection, a
computer task,
identification and classification of targets

fundamental vision enables automated

in complex

efficiency. Traditional surveillance methods rely heavily on
human operators and manual analysis, which are inherently
limited by fatigue, processing capacity, and response time.
Automated detection systems address these limitations by
enabling rapid, consistent, and scalable analysis of vast amounts
of visual data. The military and defense sectors face unique
challenges in object detection applications. These include the
need identify types varying
environmental conditions, from high-resolution satellite
imagery to low-quality video feeds from ground based cameras.
Additionally, defense applications demand secure, offline
operation to protect
operational continuity
connectivity is unavailable or restricted. The ability to process
multiple input formats—static images, video sequences, and
real-time webcam feeds—is essential for comprehensive
situational awareness across different operational scenarios.
Recent advances in deep learning have revolutionized computer
vision, with convolutional neural networks (CNNs) achieving
unprecedented accuracy in object detection tasks. The YOLO
(You Only Look Once) family of detectors represents a
paradigm shift in real-time object detection, reframing the task
as a single regression problem that simultaneously predicts
bounding boxes and class probabilities in a single forward pass.
This unified approach eliminates the need for multiple passes
over an image, enabling rapid inference without sacrificing
accuracy. YOLOV7, the latest iteration of this architecture,
incorporates significant architectural and
optimization strategies that further enhance both detection
speed and accuracy. The primary motivation for this project is
to develop a practical, deployable system that harnesses
YOLOvV7's capabilities for military object detection while
addressing the specific requirements of defense environments.
This includes secure offline operation, support for diverse input
modalities, high detection accuracy, real-time processing, and
user-friendly deployment. By combining cutting-edge deep
learning techniques with practical engineering solutions, this
research aims to deliver a tool that enhances security operations

to diverse asset across

sensitive information and ensure

in environments where internet

improvements

environments, providing crucial support for situational
awareness, tactical decision- making, and operational
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and supports informed decision-making in critical defense
scenarios.

2. LITERATURE REVIEW

2.1 Evolution of Object Detection Algorithms

Object detection has evolved significantly over the past two
decades, transitioning from handcrafted feature approaches to
sophisticated deep learning-based systems. Early methods such
as Haar cascades, histogram of oriented gradients (HOG), and
support vector machines (SVM) achieved moderate success in
controlled environments but struggled with complex
backgrounds, scale variations, and occlusions. These traditional
approaches required extensive manual feature engineering and
domain expertise, limiting their generalizability across diverse
applications. The introduction of deep learning marked a
transformative shift in computer vision. Convolutional neural
networks, pioneered by LeCun et al. with LeNet-5,
demonstrated the potential of learned hierarchical features for
image classification. The AlexNet architecture, which won the
2012 ImageNet Large Scale Visual Recognition Challenge,
sparked renewed interest in deep learning and proved that
CNNs could outperform handcrafted features at scale. This
breakthrough led to the development of deeper and more
sophisticated architectures including VGGNet, ResNet, and
Inception networks, each advancing the state-of-the-art in
feature extraction and classification accuracy. Region-based
CNNs introduced a new paradigm for object detection by
proposing candidate regions and classifying them
independently. R-CNN, proposed by Girshick et al., achieved
significant improvements in detection accuracy by applying
CNN based feature extraction to region proposals generated by
selective search. Fast R-CNN optimized this approach by
proposing once and using Region of Interest (Rol) pooling to
extract features more efficiently. Faster R-CNN further
accelerated the process by replacing selective search with a
learnable Region Proposal Network (RPN), enabling end-to-
end training and faster inference.

2.2 YOLO and Deep Learning Approaches

The YOLO (You Only Look Once) family revolutionized
object detection by introducing a fundamentally different
approach. Rather than treating detection as a classification
problem applied to region proposals, YOLO frames detection
as a single regression problem, predicting bounding box
coordinates and class probabilities directly from the input
image. This single-pass approach enabled real-time detection
on standard hardware, making object detection practical for
time-sensitive applications. YOLOVI, introduced by Redmon
et al. in 2015, processed the entire image in a single forward

pass, dividing it into a grid and predicting bounding boxes and
class probabilities for each grid cell. While this approach
sacrificed some accuracy compared to region-based methods, it
achieved approximately twice the frames per second compared
to Fast R-CNN, making real-time detection feasible.
Subsequent versions introduced grid refinements, multi-scale
predictions, and architectural improvements that incrementally
increased accuracy while maintaining real-time performance.
YOLOV7, the latest iteration, incorporates several advanced
techniques that enhance both accuracy and speed. These
include Extended Efficient Layer Aggregation Networks (E-
ELAN), model scaling based on concatenation-based models,
convolution reparameterization, and efficient edge- guided
training strategies. The architecture is structured into four main
components: the input layer with Mosaic augmentation and
adaptive image scaling, a backbone for hierarchical feature
extraction, a neck for multi-scale feature fusion, and a head for
final predictions. ~YOLOv7 achieves state-of-the-art
performance across the speed-accuracy spectrum, delivering
competitive results from 5 frames per second to 160 frames per
second depending on model scale and input resolution..

2.3Related Work in Military and Surveillance
Applications
The application of deep learning to military and defense

scenarios has garnered significant research attention. Studies
have explored CNN-based detection for identifying military
vehicles, aircraft, infrastructure, and personnel in satellite,
aerial, and ground-level imagery. These applications present
unique challenges including limited labeled training data,
variable image quality, extreme aspect ratios, and the
requirement for high-confidence predictions in operational
settings. Liu et al. demonstrated that YOLOv7-based systems
can achieve 75.9% mean Average Precision on traffic detection
in complex improving baseline YOLOv7
performance by 3.7%. Similar studies have integrated attention
mechanisms, deformable convolutions, and lightweight
modules to improve detection accuracy while maintaining real-
time performance. Research on traffic sign detection using
improved YOLOV7 achieved 88.7% mAP@0.5 on the TT100K
dataset, YOLOvV7 by 5.3%,
demonstrating the effectiveness of architectural modifications
tailored to specific application domains. In military contexts,
object detection systems have been deployed for automated
surveillance and reconnaissance. Studies highlight the

scenarios,

outperforming  baseline

importance of robust training methodologies, diverse datasets
representing operational scenarios, and careful validation to
ensure performance in deployment. Defense applications
particularly emphasize the need for confidence calibration, as
false negatives can have critical consequences, while false
positives may trigger unnecessary responses. The integration of
multiple data modalities, sophisticated preprocessing

ISSN (0) 3107-6696

© 2025, JOIREM  |www.joirem.com| Page 2



SN
‘ Y
& \
2\ 3V
.

‘-{
L

j\/

IR

L&

/

)

1=
Y
e
\ -
s
\

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 11 | Nov-2025
ISSN (0) 3107-6696

techniques, and domain-specific fine-tuning has proven
essential for reliable military object detection systems.

2.4 Comparison with Alternative Detection

Methods
Traditional handcrafted feature methods achieved moderate

success but demonstrated fundamental limitations in complex,
variable environments. Haar cascades and HOG descriptors
required extensive tuning and struggled with scale variation and
complex backgrounds. Support Vector Machines could classify
regions but required manual feature extraction, making them
labor-intensive and domain-specific. Region-based deep
learning methods including R-CNN, Fast R-CNN, and Faster
R-CNN significantly improved accuracy through end-to-end
learning of hierarchical features. However, these methods'
reliance on region proposals and multiple processing stages
limited their speed. While Faster R-CNN with RPN achieved
reasonable real- time performance, it remained slower than
single-shot methods for equivalent accuracy levels. Single-shot
detectors like SSD and YOLO addressed
computational limitations by eliminating region proposal
stages. SSD achieved competitive accuracy with improved
speed through multi-scale feature maps. YOLO models,
particularly YOLOV7, provide the most balanced solution for
applications requiring both high accuracy and real-time
performance, with the flexibility to scale model size to
computational constraints. Compared to two-stage detectors,
YOLO trades a small accuracy decrease for substantial speed
improvements—critical ~ for and military
applications where processing multiple streams simultaneously
is necessary.

3 OBJECTIVES AND SCOPE OF WORK

variants

surveillance

3.1 Primary Objectives

The overarching objective of this project is to develop a
state-of-the-art automated object detection system specifically
tailored for military and defense applications, leveraging the
YOLOV7 deep learning architecture. The system is designed to
provide rapid, accurate, and reliable identification of military
assets across diverse input formats while maintaining strict
security and data privacy requirements. Development of Multi-
Class Detection Model: Construct and train a robust object
detection model capable of recognizing 13 distinct military
object classes: Aircraft, Camouflage, Drone, Fire, Grenade,
Hand Gun, Knife, Military-Vehicle, Missile, Pistol, Rifle,
Smoke, and Soldier. The model must deliver high precision and
recall, minimizing false positives and false negatives in
operational scenarios. Support for Diverse Input Modalities:
Enable the system to process static images, recorded video files,
and live webcam streams seamlessly. This multi-modal

© 2025, JOIREM  |www.joirem.com| Page 3

capability ensures adaptability to various operational
requirements, from post-analysis of surveillance footage to
real-time threat assessment and monitoring. Secure, Offline
Operation: Architect the solution for complete offline
functionality, eliminating dependency on internet connectivity.
This requirement is critical for protecting sensitive military data
and ensuring compliance with defense sector security protocols.
All processing, training, and inference operations must occur
locally with no external data transmission. Optimized Real-
Time Performance: Achieve detection speeds exceeding 30
frames per second to enable real-time surveillance and
monitoring applications. The system must maintain detection
accuracy while processing video streams continuously without
introducing significant latency. Comprehensive Performance
Analysis: Evaluate system performance using industry-
standard metrics including precision, recall, and mean Average
Precision (mAP). Conduct sensitivity analysis on challenging
scenarios involving occlusions, variable lighting, and cluttered
backgrounds to identify performance characteristics and
limitations.

3.2 Scope of Work

Dataset Curation and Preparation: Assemble a diverse,
balanced dataset representing real-world military scenarios
from multiple perspectives and conditions. Perform meticulous
manual annotation with accurate bounding boxes and class
labels for all 13 object categories. Organize data into training,
validation, and test splits (typically 70%-15%-15% distribution)
to facilitate rigorous model development and unbiased
evaluation. Data Preprocessing and Augmentation: Standardize
image and video frame resolutions to YOLOv7's input
requirements (typically 640x640 pixels). Normalize pixel
values to zero mean and unit variance. Implement advanced
augmentation techniques including random scaling (£10%),
horizontal and vertical flipping, random rotation (£15°), color
jittering, and mosaic augmentation to increase dataset diversity
and improve model generalization. Model Architecture
Configuration: Configure YOLOvV7 architecture  with
appropriate backbone (CSPDarknet- based), neck (Path
Aggregation Network), and detection head components. Select
model scale (nano, small, medium, large, or extra-large) based
on computational requirements and accuracy targets.
Configure anchor boxes based on dataset statistics.
Hyperparameter Optimization: Systematically tune critical
hyperparameters through experimentation: learning rate
(typically 0.001-0.01), batch size (32-128), number of training
epochs (100-300), momentum (0.9-0.99), and weight decay
(0.0005). Employ adaptive learning rate schedules such as
cosine annealing or step decay to optimize convergence. Model
Training and Validation: Train the model using stochastic
gradient descent optimization with regular validation set
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evaluation. Monitor training and validation loss curves to
assess convergence and detect overfitting. Calculate precision,
recall, and mAP metrics at each epoch. Maintain checkpoints
for model recovery and fine-tuning. Inference System
Development: Develop modular inference pipelines for static
images, video files, and real-time webcam feeds. Implement
preprocessing for each input type, inference execution, and
post-processing for bounding box non-maximum suppression.
Optimize inference code for speed while maintaining detection
accuracy. Performance Evaluation and Documentation:
Conduct comprehensive performance analysis including
quantitative metrics and visual error analysis. Create detailed
technical reports documenting methodology, results,
limitations, and recommendations. Prepare user guides for
deployment and operational use

4. METHODOLOGY
1.1 Data Preparation and Preprocessing

The foundation of any successful deep learning system is
high-quality, representative training data. This project
assembled a comprehensive dataset consisting of thousands of
images and video frames representing 13 military object
classes. Data collection targeted diverse scenarios including
different lighting conditions, viewing angles, scales, and
backgrounds to ensure model robustness. Dataset Composition
and Annotation: Each sample in the dataset was manually
annotated using computer vision annotation tools, creating
precise bounding boxes around objects of interest and assigning
appropriate class labels. This meticulous annotation process
ensures the model receives accurate supervision during
training. The dataset was organized into training, validation,
and test sets using stratified splitting to ensure each set
contained representative distributions of all 13 classes.
Preprocessing Operations: All images were resized to 640x640
pixels to conform to YOLOV7's input specifications. Pixel
values were normalized to the range [0, 1] and further
standardized using ImageNet statistics (mean subtraction and
standard deviation normalization). This normalization
stabilizes training by ensuring inputs to the network have
consistent statistical properties, enabling faster convergence
and more stable gradient flow. Data Augmentation Strategy:
Advanced augmentation techniques were applied during
training to increase effective dataset size and improve model
robustness: Mosaic augmentation combined four training
images into a single input, increasing batch diversity; random
scaling varied object sizes within +10%; horizontal and vertical
flipping provided reflection invariance; random rotation (£15°)
accommodated viewing angle variations; color jittering
modified brightness, contrast, and saturation; Gaussian noise
addition simulated sensor noise. These augmentations were

applied probabilistically during training, ensuring the model
encountered varied representations of the same objects

1.2 Model Architecture and Configuration

YOLOvV7 Architecture Overview: YOLOv7 comprises four
primary components. The input layer applies mosaic
augmentation, adaptive anchor calculation, and automatic
image scaling. The backbone network (CSPDarknet-based)
extracts hierarchical features through convolutional operations
with residual connections, progressively increasing receptive
field while reducing spatial dimensions. The neck (Path
Aggregation Network) fuses features across multiple scales
through upsampling and concatenation, enabling the detector to
handle objects of varying sizes. The detection head predicts
bounding boxes, objectness scores, and class probabilities for
each scale, outputting predictions in three feature map sizes
(80x80, 40x40, 20x20 for 640%x640 input). Anchor Box
Configuration: YOLOv7 uses predefined anchor boxes to
initialize predictions. Rather than using generic ImageNet
derived anchors, this project computed dataset-specific anchors
through k-means clustering on ground truth bounding box
dimensions. This adaptation ensures anchors match the typical
aspect ratios and scales present in military object images,
improving initial prediction quality and convergence speed.
Loss Function: The training objective combines multiple loss
components. Bounding box regression loss (typically GIoU or
DIoU loss) measures coordinate prediction accuracy.
Objectness loss (binary cross-entropy) determines whether
regions contain objects. Classification loss (cross-entropy
across 13 classes) assigns class predictions. The weighted
combination of these components is optimized during training:
Total Loss = A_box x L_box + A obj x L obj + A _cls x L _cls
where A values balance the relative importance of each
component.

1.3 Training Procedure and Hyperparameter Tuning

Optimization Strategy: Model training employed Stochastic
Gradient Descent with momentum 0.937 and weight decay Se-
4. A learning rate schedule was implemented, initializing at
0.01 and decaying via cosine annealing over the training period.
The warmup strategy gradually increased the learning rate for
the first 1,000 iterations, stabilizing training before full
convergence. Batch size was set to 64, balancing computational
efficiency with gradient stability. Training Protocol: Training
proceeded for 300 epochs over the complete dataset. Validation
set evaluation occurred every epoch, computing precision,
recall, F1 score, and mAP@0.5 metrics. Early stopping was not
employed, as YOLOvV7 typically requires extended training for
optimal convergence. The training process was performed on
local hardware wusing GPU acceleration (NVIDIA or
equivalent), with all operations conducted entirely offline to
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ensure data security. Hyperparameter Justification: Learning
rate 0.01 provided sufficient gradient signal for effective
parameter updates without causing divergence. Momentum
0.937 stabilized gradient descent by smoothing noisy gradient
estimates from mini-batches. Weight decay S5e-4 provided
regularization to prevent overfitting on the relatively balanced
dataset. Batch size 64 balanced memory efficiency with
sufficient gradient diversity per update. Cosine annealing
enabled the learning rate to gradually decay, promoting
convergence to sharper minima associated with better
generalization

4.4 Validation and Performance Metrics

Evaluation Metrics: Model performance was quantified using
standard object detection metrics: Precision: The fraction of
predicted detections that were correct (TP/(TP+FP)), measuring
false positive rate Recall: The fraction of ground truth objects
that were detected (TP/(TP+FN)), measuring false negative rate
Average Precision (AP): The area under the precision-recall
curve for a specific class, computed at IoU threshold 0.5 Mean
Average Precision (mAP): The average AP across all 13 object
classes, providing single-number performance
summary Validation Procedure: Validation occurred at the end
of each training epoch on a held-out validation set (15% of total
data). During validation, the model operated in inference mode
(disabling dropout and batch normalization updates), and

overall

predictions were made on all validation images. Non-maximum
suppression with IoU threshold 0.45 eliminated redundant
overlapping detections, and confidence threshold 0.5 filtered
low - confidence predictions. Metrics were computed by
comparing predictions to ground truth annotations. Results: The
final trained model achieved exceptional performance metrics:
Precision: 90.1% (indicating low false positive rate) Recall:
84.3% (indicating low false negative rate) mAP@0.5: 86.9%
(indicating strong overall detection accuracy) These results
demonstrate the model's ability to reliably identify military
objects across diverse scenarios while maintaining low false
positive and false negative rates

5. EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Quantitative Performance Analysis

The trained YOLOvV7 model demonstrated outstanding
performance across all evaluation metrics. On the test set (15%
of total data, held entirely separate from training and
validation), the model achieved: Overall mAP@0.5: 86.9% -
This represents the average detection accuracy across all 13
military object classes Precision: 90.1% - Indicating that 90.1%
of predicted detections were true positives Recall: 84.3% -
Indicating that 84.3% of all ground truth objects were
successfully detected F1 Score: 0.871

- The harmonic mean of precision and recall Performance
varied across object classes, with some classes achieving
detection rates exceeding 92% mAP while others (typically
smaller or more visually similar objects) achieved 78-82%
mAP. Aircraft and Military-Vehicles, relatively distinctive
large objects, achieved over 93% mAP. Smaller objects like
Grenades and Knives, which share visual similarity with other
objects and exhibit high scale variation, achieved 79-81% mAP.
Soldiers, medium- scale highly variable objects, achieved 87%
mAP.

5.2 Inference Speed and Real-Time Capability

A critical requirement for military surveillance applications
is real-time processing. Testing on standard hardware (NVIDIA
GeForce RTX 2060) demonstrated: Image Inference: 25-35 ms
per 640x640 image, translating to 28-40 FPS for single-image
processing Video Inference: 30-40 ms per frame including
preprocessing, inference, and post-processing (25-33 FPS for
continuous video streams) Webcam Inference: 25-35 FPS
sustained over extended periods (hours of continuous
operation) These frame rates comfortably exceed the 30 fps
threshold typically required for surveillance and threat
assessment applications, enabling real-time monitoring without
excessive latency.

5.3 Sensitivity Analysis and Error Evaluation

Comprehensive analysis of detection failures revealed

systematic patterns: Detection Challenges:

1. Occlusion: Partially obscured objects showed reduced

detection rates. Objects obscured by >50% were frequently

missed. However, partially visible objects (10-50%

occlusion) were typically detected with minimal accuracy

loss.

2. Scale Variation: Very small objects (64x64 pixels were
detected with >90% accuracy.

3. Lighting Conditions: Extreme lighting (very dark images,

harsh shadows) caused occasional failures. However, the data

augmentation techniques effectively mitigated this issue for

normal operating ranges.

4. Complex Backgrounds: Cluttered scenes with numerous
confusing elements showed slightly reduced precision but
maintained acceptable recall. The high precision (90.1%)
indicates that the model avoided misclassifying background
elements as military objects.

Rare Object Types: Less frequently represented classes
(Grenades, Knives) showed higher false negative rates due to
limited training examples. This suggests potential for
improvement through expanded dataset collection for
underrepresented classes.
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6. CONCLUSION [1] Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020).

The Military Object Detection System represents a practical
implementation of state-of-the-art deep learning for defense
and surveillance applications. By leveraging YOLOv7's
capabilities and tailoring the architecture for secure, offline
deployment, this project delivers a tool that effectively balances
detection accuracy, processing speed, and operational security
requirements. Key achievements include: Development of a
multi-class detection model achieving 86.9% mAP@0.5 with
90.1% precision Real-time processing capability (>30 fps)
across multiple input modalities Secure, offline operation
meeting defense sector security requirements Comprehensive
system implementation spanning data preparation through
deployment The system successfully addresses the primary
challenge of automated military object detection while
maintaining the security and privacy requirements essential for
defense environments. Quantitative performance metrics and
operational testing demonstrate the system's reliability and
effectiveness in practical scenarios. While certain limitations
remain regarding detection under extreme conditions and
dataset representativeness, the foundation established by this
project provides a solid basis for future enhancements. By
continuing to expand datasets, refine architectures, and
integrate additional sensor modalities, the Military Object
Detection System can be further enhanced to meet evolving
defense requirements while maintaining its effectiveness in
real-world operational deployment. This research contributes to
the broader advancement of Al applications in defense by
demonstrating how deep learning can be effectively deployed
in secure, resource-constrained environments  while
maintaining performance standards. The work serves as both a
practical tool for defense operations and a foundation for future
research in automated surveillance and threat assessment
systems

Abbreviations-
o Al Artificial Intelligence
o NLP: Natural Language Processing
o STT: Speech-to-Text
o ASR: Automatic Speech Recognition
o LLM: Large Language Model
o UL User Interface
o LMS: Learning Management System
o MB : Megabytes
¢ RAM : Random Access Memory
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