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ABSTRACT: The proliferation of Large Language Models 

(LLMs) has significantly impacted software development, yet 
their substantial computational and resource demands create 
barriers to widespread accessibility. This paper details the 
development and evaluation of a Small Language Model 
(SLM) designed as an efficient, practical alternative for coding 
assistance. The primary goal is to create a lightweight, low-
latency model specialized in Python, capable of performing 
real-time code completion and generating functions from 
natural language prompts. The methodology employs a 
transformer-based decoder-only architecture (100-300M 
parameters) trained on a filtered, high-quality dataset of open-
source code. Model performance is assessed using the pass@k 
metric from the HumanEval benchmark for functional 
correctness, alongside measurements of inference speed and 
memory footprint to validate its efficiency. This research will 
deliver a proof-of-concept prototype, demonstrating that 
specialized SLMs can offer a sustainable and effective solution 
that enhances developer productivity while democratizing 
access to advanced AI-powered coding tools. 
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Abbreviations - 

SLM- Small Language Model 

LLM- Large Language Model 

NLP- Natural Language Processing 

GPU- Graphics Processing Unit 

API- Application Programming Interface  

INTRODUCTION: 

Software development has evolved into one of the most critical 
components of the digital era. From powering large-scale 
enterprise systems to enabling simple mobile applications, code 
has become the language that drives modern technology. 

Industries such as healthcare, finance, education, and 
entertainment depend heavily on software solutions to improve 
efficiency, enhance customer experience, and innovate faster. 
As a result, developers are constantly challenged to deliver 
high-quality, scalable, and secure code under tight deadlines. 

However, traditional coding practices present certain 
limitations. Writing code manually requires significant time 
and attention to detail. Repetitive tasks like creating boilerplate 
code, fixing syntax errors, and maintaining uniform code style 
often slow down the development process. These challenges 
are compounded in large projects where multiple developers 
work simultaneously, increasing the risk of inconsistencies and 
integration issues. 

Recent advancements in Artificial Intelligence (AI) have begun 
to transform the way programming is approached. Natural 
Language Processing (NLP), in particular, has made it possible 
for machines to interpret and generate human-like text. 
Building upon this, Specialized Language Models (SLMs) 
have been developed to handle programming-specific tasks, 
enabling them to understand syntax, logical structures, and the 
semantics of multiple programming languages. 

An SLM trained for coding is more than just a smart text editor. 
It can generate optimized code snippets, detect and correct 
logical errors, recommend best coding practices, and even 
provide explanations for complex algorithms. This reduces not 
only development time but also the chances of introducing 
errors into the codebase. For novice programmers, it serves as 
a learning companion, guiding them step-by-step through 

programming concepts while offering instant feedback. 

Furthermore, SLMs can adapt to different programming 
paradigms and frameworks, making them suitable for a wide 
range of applications—from web development and data 
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analysis to embedded systems programming. This versatility 
allows developers to focus more on creative problem-solving 
rather than repetitive implementation tasks. 

The SLM for Coding minor project aims to explore and 
demonstrate the capabilities of such a system in a practical 
environment. The primary goal is to develop an AI-powered 
coding assistant capable of supporting multiple programming 
languages, offering intelligent suggestions, automating 
repetitive tasks, and improving the overall coding experience. 

During the course of the project, the SLM will be evaluated on 
parameters such as speed, accuracy, adaptability, and user-
friendliness. Multiple coding scenarios will be tested, ranging 
from simple script generation to debugging and optimization of 
complex functions. This evaluation will help assess the true 
potential of AI-assisted coding in real-world applications. 

Additionally, the project will address important ethical and 
practical considerations. These include the need to ensure that 
AI-generated code is original, free from licensing issues, and 
compliant with security standards. It will also explore the 
balance between automation and human oversight, ensuring 
that the technology complements rather than replaces human 
creativity and problem-solving skills. 

By the end of this project, a working prototype of the SLM for 
Coding system will be presented. This prototype will serve as 
proof of concept for how AI-powered tools can improve 
efficiency, reduce errors, and accelerate the software 
development lifecycle. Ultimately, this work will contribute to 
the growing body of knowledge on integrating AI into the 
coding process, highlighting its potential to reshape the future 
of programming in both academic and professional contexts 

1.1 Challenges 

The rapid advancement of Large Language Models (LLMs) in 
code generation has set a high performance benchmark, yet 
their immense scale presents significant challenges in 
accessibility, computational cost, and deployment latency. This 
project, by focusing on a Small Language Model (SLM), 
confronts the central challenge of this performance-versus-
efficiency trade-off: achieving robust functional correctness 
with a model intentionally constrained to 100-300 million 
parameters. A primary obstacle is the rigorous demand of data 
curation; sourcing and filtering a high-quality dataset from vast, 
noisy open-source repositories like The Stack is a complex data 
engineering task critical to model success. Furthermore, the 
project's goal of achieving functional correctness, measured by 
the pass@k benchmark, introduces a significant hurdle beyond 
simple syntactic accuracy. This requires the creation of a secure 

sandbox environment to safely execute untrusted, AI-generated 
code against unit tests—a substantial engineering challenge in 
itself. Finally, even with a smaller architecture, the training 
process demands careful management of limited GPU 
resources to effectively train the model to understand the 
complex logic and dependencies inherent in programming. 

1.2 Need of Efficient Coding Model 

The development of efficient coding models has become 
essential for the future of software engineering. It enables the 
democratization of advanced AI assistance, placing powerful 
tools directly into developer workflows without requiring 
massive computational resources. Through lightweight, low-
latency models, companies can provide real-time code 
completion and bug detection, optimizing the development 
lifecycle. This understanding helps in reducing repetitive tasks, 
improving code quality, and accelerating project timelines, 
ultimately leading to increased productivity and innovation 
across the industry.  

LITERATURE REVIEW 

[1] The emergence of models like GPT-3 showcased the 
potential of LLMs in coding tasks, leading to specialized 
models trained extensively on code, such as OpenAI's 
Codex, which powers GitHub Copilot. Vaswani et al. 
(2017) in "Attention Is All You Need" introduced the 
transformer architecture, which became foundational for 
these advancements. Chen et al. (2021) in "Evaluating 
Large Language Models Trained on Code" demonstrated 
that LLMs could effectively solve introductory 
programming problems. However, their work also 
highlighted the significant computational resources and 
costs required for training and deploying such models. 

[2] To address the challenges of LLMs, research has 
pivoted toward smaller, specialized models optimized for 
code-related tasks. CodeT5 (Wang et al., 2021) 
introduced a unified pre-trained encoder-decoder model 
capable of handling tasks like code generation and 
summarization with a compact architecture. Similarly, 
CodeGen (Nijkamp et al., 2022) explored the balance 
between model size and performance, showing that 
smaller models could achieve competitive results through 
targeted training on high-quality, domain-specific 
datasets. 

[3]  To enhance the efficiency of Small Language Models 
(SLMs), techniques such as knowledge distillation and 
quantization have been widely adopted. Knowledge distillation 
involves training a smaller "student" model to replicate the 
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behavior of a larger "teacher" model, effectively compressing 
knowledge into a more efficient form. Bucilă et al. (2006) 
provided foundational insights into model compression, which 
have been applied to modern LLMs to create distilled models 
that maintain much of the original performance while being 
significantly smaller and faster. 

[4] Assessing the quality of generated code remains a complex 
challenge. Traditional NLP metrics, such as BLEU, are often 
inadequate for code evaluation. The HumanEval framework, 
introduced by Chen et al. (2021), proposed a robust evaluation 
approach based on functional correctness, where generated 
code is tested against a suite of unit tests. The pass@k metric 
has since become a standard for benchmarking code generation 
models. 

Objectives and Scope of work 

3.1  Objectives 
The primary aim of this project is to develop and evaluate a 
highly efficient Small Language Model (SLM) specifically 
designed for practical coding assistance, focusing on robust 
performance and computational efficiency for real-world 
developer workflows. This will be achieved by creating an 
SLM architecture, likely leveraging transformer-based designs 
with knowledge distillation that emphasizes low latency, 
minimal memory footprint, and reduced computational 
overhead. The model will be trained on a carefully curated 
dataset of high-quality Python source code from reputable 
repositories to achieve deep domain expertise and the ability to 
generate accurate, idiomatic code. The resulting system will be 
capable of performing key assistance tasks like real-time code 
completion, function generation from natural language, and 
simple bug detection. Its performance will be comprehensively 
evaluated against larger LLMs using industry-standard metrics, 
such as the pass@k HumanEval benchmark for functional 
correctness and code BLEU for syntactic similarity, to quantify 
its efficiency gains. Finally, a proof-of-concept prototype, such 
as a web interface or IDE extension, will be created to 
demonstrate the SLM's practical utility. 

Scope of Work 

To ensure the project is achievable, its scope is clearly defined. 
The in-scope work focuses on specializing the model for a 
single programming language, Python, to ensure a deep 
understanding of its nuances. The model's core functionalities 
will be limited to real-time code completion and simple 
function generation from clear docstrings, trained on a publicly 
available, filtered dataset like "The Stack." Performance will be 
strictly measured by accuracy, functional correctness against 
unit tests, and inference speed. Conversely, the project will not 

attempt to generate entire applications, complex multi-file 
algorithms, or perform deep logical debugging, though it may 
identify simple syntax errors. The focus will remain on the 
model itself, not on building a scalable, production-grade cloud 
service. 

Methodology 

4.1 Data Collection 

Architecture:  

The model architecture will be a transformer-based, decoder-
only structure, similar to GPT-2, which is adopted due to its 
proven effectiveness in generative tasks. A "small" model 
configuration will be explicitly chosen, targeting a parameter 
count significantly lower than large-scale models (e.g., in the 
range of 100-300 million parameters). This decision ensures the 
final model remains lightweight and efficient, prioritizing low 
latency and minimal resource footprint for practical 
deployment. 

4.2 Data Preprocessing: 

The data preparation process will begin with the selection of a 
large-scale, open-source code dataset, such as a subset of The 
Stack. This dataset will then undergo a rigorous filtering 
process to isolate only high-quality Python source code, using 
criteria such as the presence of valid licenses, adherence to code 
formatting standards, and the exclusion of auto-generated or 
low-quality files. Finally, the curated code will be preprocessed 
and tokenized using a specialized tokenizer designed 
specifically for programming languages, ensuring it can 
effectively handle syntax elements like indentation and special 
characters. 

4.3 Model Selection: 

For model selection, a transformer-based decoder-only 
architecture, similar to GPT-2, will be adopted due to its proven 
effectiveness in generative tasks. A "small" model 
configuration will be chosen, with a parameter count 
significantly lower than that of large-scale models (e.g., in the 
range of 100-300 million parameters). This ensures the model 
remains lightweight and efficient. 

4.4 Model Training: 

The model will first be pre-trained on the curated code dataset 
using a causal language modeling objective, which involves 
predicting the next token in a sequence. This initial training will 
be conducted on a cloud-based GPU platform, such as Google 
Colab Pro or Kaggle, where key hyperparameters like learning 
rate, batch size, and training steps will be systematically tuned. 
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Following pre-training, the model will be fine-tuned on a more 
specific dataset of instruction-based prompts (e.g., "write a 
Python function that...") to enhance its ability to understand and 
follow natural language commands. 

4.5 Model Evaluation: 

The model's performance will be comprehensively evaluated 
across three key dimensions: functional correctness, code 
quality, and efficiency. Functional correctness will be assessed 
using a benchmark similar to HumanEval, where the pass@k 
metric will be calculated to measure the percentage of problems 
for which at least one of k generated solutions passes the unit 
tests. Code quality will be measured using the BLEU score, 
which compares the generated code against reference solutions 
to provide a measure of syntactic similarity. Finally, efficiency 
will be quantified by measuring inference speed (tokens per 
second) and memory footprint to determine the model's 
suitability for real-time applications. 

Fig. 1 Accuracy Graph & Loss Graph 

 

Conclusion And Future Work 

5.1 Conclusion: 

This project will explore the development of a Small Language 
Model (SLM) for coding, addressing the critical need for 
efficient, accessible, and practical AI-powered developer 
tools. By moving away from the resource-intensive paradigm 
of Large Language Models, this work aims to demonstrate that 
a well-designed, specialized model can deliver significant 
value in real-world software development workflows. The 
successful implementation of an SLM for code completion and 
generation will confirm that high performance does not have 
to come at the cost of extreme computational expense. 

The methodology outlined, from careful data curation to 
rigorous evaluation using industry-standard benchmarks, will 
provide a comprehensive framework for building and 
assessing such models. The final prototype will serve as a 
tangible proof-of-concept, showcasing the potential for SLMs 
to be integrated seamlessly into development environments, 
thereby boosting productivity, reducing repetitive work, and 
lowering the barrier to entry for new programmers. Ultimately, 
this project will contribute to the ongoing democratization of 
AI, making powerful coding assistance tools more sustainable 
and widely available. 

5.2 Future Work: 

While this project establishes a strong foundation, numerous 
avenues exist for future exploration. These include enhancing 
the model with multi-modal capabilities to understand UI 
mockups or diagrams for frontend code generation, and 
extending its scope beyond generation to include advanced 
debugging and automated code refactoring. Furthermore, the 
model could be personalized by fine-tuning it on a team's 
specific codebase to learn unique coding styles and private 
APIs. Further research into model compression techniques like 
quantization could enable on-device execution, ensuring 
privacy and offline functionality. Finally, a collaborative 
filtering system could be developed, allowing the model to 
learn from team interactions to suggest code snippets that are 
popular or highly-rated within an organization. 
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