Wi
,{g ‘:

<55
ostl.

IS

IR

")

\ T

/

-

)

V3
7
\
N
W

j\/
f

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 11 | Nov-2025
ISSN (0) 3107-6696

Small Language Model for coding and debugging

Abhigyan Ranjan?, Ritesh Kumar?,

12 Scholar, B.Tech. (AI&DS) 4th Year, Department of Artificial Intelligence and Data Science, Dr. Akhilesh Das
Gupta Institute of Professional Studies, New Delhi

1gbhigyanranjanofficial @gmail.com, 2Assistant Professor (Al & DS)

ABSTRACT: The proliferation of Large Language Models
(LLMs) has significantly impacted software development, yet
their substantial computational and resource demands create
barriers to widespread accessibility. This paper details the
development and evaluation of a Small Language Model
(SLM) designed as an efficient, practical alternative for coding
assistance. The primary goal is to create a lightweight, low-
latency model specialized in Python, capable of performing
real-time code completion and generating functions from
natural language prompts. The methodology employs a
transformer-based decoder-only (100-300M
parameters) trained on a filtered, high-quality dataset of open-
source code. Model performance is assessed using the pass@k
metric from the HumanEval benchmark for functional
correctness, alongside measurements of inference speed and
memory footprint to validate its efficiency. This research will
deliver a proof-of-concept prototype, demonstrating that
specialized SLMs can offer a sustainable and effective solution
that enhances developer productivity while democratizing
access to advanced Al-powered coding tools.

architecture

Keywords —Small Language Models (SLMs), Code
Generation, Large Language Models (LLMs), Al-Assisted
Coding, Natural Language Processing (NLP), Transformer
Architecture, Program Synthesis, Code Completion, Model
Efficiency, Low-Latency Al, HumanEval Benchmark, pass@k,
Al Developer Tools, Python.

Abbreviations -

SLM- Small Language Model

LLM- Large Language Model

NLP- Natural Language Processing
GPU- Graphics Processing Unit

API- Application Programming Interface

INTRODUCTION:

Software development has evolved into one of the most critical
components of the digital era. From powering large-scale
enterprise systems to enabling simple mobile applications, code
has become the language that drives modern technology.
Industries such as healthcare, finance, education, and
entertainment depend heavily on software solutions to improve
efficiency, enhance customer experience, and innovate faster.
As a result, developers are constantly challenged to deliver
high-quality, scalable, and secure code under tight deadlines.
However, traditional coding practices present certain
limitations. Writing code manually requires significant time
and attention to detail. Repetitive tasks like creating boilerplate
code, fixing syntax errors, and maintaining uniform code style
often slow down the development process. These challenges
are compounded in large projects where multiple developers
work simultaneously, increasing the risk of inconsistencies and
integration issues.

Recent advancements in Artificial Intelligence (AI) have begun
to transform the way programming is approached. Natural
Language Processing (NLP), in particular, has made it possible
for machines to interpret and generate human-like text.
Building upon this, Specialized Language Models (SLMs)
have been developed to handle programming-specific tasks,
enabling them to understand syntax, logical structures, and the
semantics of multiple programming languages.

An SLM trained for coding is more than just a smart text editor.
It can generate optimized code snippets, detect and correct
logical errors, recommend best coding practices, and even
provide explanations for complex algorithms. This reduces not
only development time but also the chances of introducing
errors into the codebase. For novice programmers, it serves as
a learning companion, guiding them step-by-step through

programming concepts while offering instant feedback.

Furthermore, SLMs can adapt to different programming
paradigms and frameworks, making them suitable for a wide
range of applications—from web development and data

© 2025, JOIREM |www.joirem.com| Page 1

ISSN (0) 3107-6696

SN
‘ Y
& \
2\ 3V
.

‘-{
L

j\/

IR

L&

/

)

1=
Y
e
\ Z
s
\

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 11 | Nov-2025
ISSN (0) 3107-6696

analysis to embedded systems programming. This versatility
allows developers to focus more on creative problem-solving
rather than repetitive implementation tasks.

The SLM for Coding minor project aims to explore and
demonstrate the capabilities of such a system in a practical
environment. The primary goal is to develop an Al-powered
coding assistant capable of supporting multiple programming
offering intelligent suggestions, automating
repetitive tasks, and improving the overall coding experience.

languages,

During the course of the project, the SLM will be evaluated on
parameters such as speed, accuracy, adaptability, and user-
friendliness. Multiple coding scenarios will be tested, ranging
from simple script generation to debugging and optimization of
complex functions. This evaluation will help assess the true
potential of Al-assisted coding in real-world applications.

Additionally, the project will address important ethical and
practical considerations. These include the need to ensure that
Al-generated code is original, free from licensing issues, and
compliant with security standards. It will also explore the
balance between automation and human oversight, ensuring
that the technology complements rather than replaces human
creativity and problem-solving skills.

By the end of this project, a working prototype of the SLM for
Coding system will be presented. This prototype will serve as
proof of concept for how Al-powered tools can improve
efficiency, reduce errors, and accelerate the software
development lifecycle. Ultimately, this work will contribute to
the growing body of knowledge on integrating Al into the
coding process, highlighting its potential to reshape the future
of programming in both academic and professional contexts

1.1 Challenges

The rapid advancement of Large Language Models (LLMs) in
code generation has set a high performance benchmark, yet
their immense scale presents significant challenges in
accessibility, computational cost, and deployment latency. This
project, by focusing on a Small Language Model (SLM),
confronts the central challenge of this performance-versus-
efficiency trade-off: achieving robust functional correctness
with a model intentionally constrained to 100-300 million
parameters. A primary obstacle is the rigorous demand of data
curation; sourcing and filtering a high-quality dataset from vast,
noisy open-source repositories like The Stack is a complex data
engineering task critical to model success. Furthermore, the
project's goal of achieving functional correctness, measured by
the pass@k benchmark, introduces a significant hurdle beyond
simple syntactic accuracy. This requires the creation of a secure

sandbox environment to safely execute untrusted, Al-generated
code against unit tests—a substantial engineering challenge in
itself. Finally, even with a smaller architecture, the training
process demands careful management of limited GPU
resources to effectively train the model to understand the
complex logic and dependencies inherent in programming.

1.2 Need of Efficient Coding Model

The development of efficient coding models has become
essential for the future of software engineering. It enables the
democratization of advanced Al assistance, placing powerful
tools directly into developer workflows without requiring
massive computational resources. Through lightweight, low-
latency models, companies can provide real-time code
completion and bug detection, optimizing the development
lifecycle. This understanding helps in reducing repetitive tasks,
improving code quality, and accelerating project timelines,
ultimately leading to increased productivity and innovation
across the industry.

LITERATURE REVIEW

[1] The emergence of models like GPT-3 showcased the
potential of LLMs in coding tasks, leading to specialized
models trained extensively on code, such as OpenAl's
Codex, which powers GitHub Copilot. Vaswani et al.
(2017) in "Attention Is All You Need" introduced the
transformer architecture, which became foundational for
these advancements. Chen et al. (2021) in "Evaluating
Large Language Models Trained on Code" demonstrated
that LLMs could effectively solve introductory
programming problems. However, their work also
highlighted the significant computational resources and
costs required for training and deploying such models.

[2] To address the challenges of LLMs, research has
pivoted toward smaller, specialized models optimized for
code-related tasks. CodeT5 (Wang et al, 2021)
introduced a unified pre-trained encoder-decoder model
capable of handling tasks like code generation and
summarization with a compact architecture. Similarly,
CodeGen (Nijkamp et al., 2022) explored the balance
between model size and performance, showing that
smaller models could achieve competitive results through
targeted training on high-quality, domain-specific
datasets.

[31 To enhance the efficiency of Small Language Models
(SLMs), techniques such as knowledge distillation and
quantization have been widely adopted. Knowledge distillation
involves training a smaller "student" model to replicate the

© 2025, JOIREM |www.joirem.com| Page 2

ISSN (0) 3107-6696

SN
‘ Y
& \
2\ 3V
.

‘-{
L

j\/

IR

L&

/

)

1=
Y
e
\ Z
s
\

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 11 | Nov-2025
ISSN (0) 3107-6696

behavior of a larger "teacher" model, effectively compressing
knowledge into a more efficient form. Bucild et al. (2006)
provided foundational insights into model compression, which
have been applied to modern LLMs to create distilled models
that maintain much of the original performance while being
significantly smaller and faster.

[4] Assessing the quality of generated code remains a complex
challenge. Traditional NLP metrics, such as BLEU, are often
inadequate for code evaluation. The HumanEval framework,
introduced by Chen et al. (2021), proposed a robust evaluation
approach based on functional correctness, where generated
code is tested against a suite of unit tests. The pass@k metric
has since become a standard for benchmarking code generation
models.

Objectives and Scope of work

3.1 Objectives

The primary aim of this project is to develop and evaluate a
highly efficient Small Language Model (SLM) specifically
designed for practical coding assistance, focusing on robust
performance and computational efficiency for real-world
developer workflows. This will be achieved by creating an
SLM architecture, likely leveraging transformer-based designs
with knowledge distillation that emphasizes low latency,
minimal memory footprint, and reduced computational
overhead. The model will be trained on a carefully curated
dataset of high-quality Python source code from reputable
repositories to achieve deep domain expertise and the ability to
generate accurate, idiomatic code. The resulting system will be
capable of performing key assistance tasks like real-time code
completion, function generation from natural language, and
simple bug detection. Its performance will be comprehensively
evaluated against larger LLMs using industry-standard metrics,
such as the pass@k HumanEval benchmark for functional
correctness and code BLEU for syntactic similarity, to quantify
its efficiency gains. Finally, a proof-of-concept prototype, such
as a web interface or IDE extension, will be created to
demonstrate the SLM's practical utility.

Scope of Work

To ensure the project is achievable, its scope is clearly defined.
The in-scope work focuses on specializing the model for a
single programming language, Python, to ensure a deep
understanding of its nuances. The model's core functionalities
will be limited to real-time code completion and simple
function generation from clear docstrings, trained on a publicly
available, filtered dataset like "The Stack." Performance will be
strictly measured by accuracy, functional correctness against
unit tests, and inference speed. Conversely, the project will not

attempt to generate entire applications, complex multi-file
algorithms, or perform deep logical debugging, though it may
identify simple syntax errors. The focus will remain on the
model itself, not on building a scalable, production-grade cloud
service.

Methodology
4.1 Data Collection

Architecture:

The model architecture will be a transformer-based, decoder-
only structure, similar to GPT-2, which is adopted due to its
proven effectiveness in generative tasks. A "small" model
configuration will be explicitly chosen, targeting a parameter
count significantly lower than large-scale models (e.g., in the
range of 100-300 million parameters). This decision ensures the
final model remains lightweight and efficient, prioritizing low

latency and minimal resource footprint for practical
deployment.
4.2 Data Preprocessing:

The data preparation process will begin with the selection of a
large-scale, open-source code dataset, such as a subset of The
Stack. This dataset will then undergo a rigorous filtering
process to isolate only high-quality Python source code, using
criteria such as the presence of valid licenses, adherence to code
formatting standards, and the exclusion of auto-generated or
low-quality files. Finally, the curated code will be preprocessed
and tokenized using a specialized tokenizer designed
specifically for programming languages, ensuring it can
effectively handle syntax elements like indentation and special
characters.

4.3 Model Selection:

For model selection, a transformer-based decoder-only
architecture, similar to GPT-2, will be adopted due to its proven
effectiveness in generative tasks. A "small" model
configuration will be chosen, with a parameter count
significantly lower than that of large-scale models (e.g., in the
range of 100-300 million parameters). This ensures the model
remains lightweight and efficient.

4.4 Model Training:

The model will first be pre-trained on the curated code dataset
using a causal language modeling objective, which involves
predicting the next token in a sequence. This initial training will
be conducted on a cloud-based GPU platform, such as Google
Colab Pro or Kaggle, where key hyperparameters like learning
rate, batch size, and training steps will be systematically tuned.

© 2025, JOIREM |www.joirem.com| Page 3

ISSN (0) 3107-6696

N
\
\/
’d

_\\\\ :.‘
;{g)

2d
st

N

14
‘/0
74
.-

j:

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 11 | Nov-2025
ISSN (0) 3107-6696

Following pre-training, the model will be fine-tuned on a more
specific dataset of instruction-based prompts (e.g., "write a
Python function that...") to enhance its ability to understand and
follow natural language commands.

4.5 Model Evaluation:

The model's performance will be comprehensively evaluated
across three key dimensions: functional correctness, code
quality, and efficiency. Functional correctness will be assessed
using a benchmark similar to HumanEval, where the pass@k
metric will be calculated to measure the percentage of problems
for which at least one of k generated solutions passes the unit
tests. Code quality will be measured using the BLEU score,
which compares the generated code against reference solutions
to provide a measure of syntactic similarity. Finally, efficiency
will be quantified by measuring inference speed (tokens per
second) and memory footprint to determine the model's
suitability for real-time applications.

Fig. 1 Accuracy Graph & Loss Graph

Conclusion And Future Work

5.1 Conclusion:

This project will explore the development of a Small Language
Model (SLM) for coding, addressing the critical need for
efficient, accessible, and practical Al-powered developer
tools. By moving away from the resource-intensive paradigm
of Large Language Models, this work aims to demonstrate that
a well-designed, specialized model can deliver significant
value in real-world software development workflows. The
successful implementation of an SLM for code completion and
generation will confirm that high performance does not have
to come at the cost of extreme computational expense.

The methodology outlined, from careful data curation to
rigorous evaluation using industry-standard benchmarks, will
provide a comprehensive framework for building and
assessing such models. The final prototype will serve as a
tangible proof-of-concept, showcasing the potential for SLMs
to be integrated seamlessly into development environments,
thereby boosting productivity, reducing repetitive work, and
lowering the barrier to entry for new programmers. Ultimately,
this project will contribute to the ongoing democratization of
Al, making powerful coding assistance tools more sustainable
and widely available.

5.2 Future Work:

While this project establishes a strong foundation, numerous
avenues exist for future exploration. These include enhancing
the model with multi-modal capabilities to understand UI
mockups or diagrams for frontend code generation, and
extending its scope beyond generation to include advanced
debugging and automated code refactoring. Furthermore, the
model could be personalized by fine-tuning it on a team's
specific codebase to learn unique coding styles and private
APIs. Further research into model compression techniques like
quantization could enable on-device execution, ensuring
privacy and offline functionality. Finally, a collaborative
filtering system could be developed, allowing the model to
learn from team interactions to suggest code snippets that are
popular or highly-rated within an organization.

REFERENCES

[1]Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, et al.
"Evaluating Large Language Models Trained on Code." arXiv,
arXiv:2107.03374, 2021.

[2]BibaultNijkamp, Erik, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Han Wang, Yingbo Zhou, et al. "CodeGen: A Conversational
Paradigm for Program Synthesis." arXiv, arXiv:2203.13474,
2022.

[3]Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, et al. "Attention Is
All You Need." Advances in Neural Information Processing
Systems, vol. 30, 2017.

[4]Wang, Yue, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. "CodeT5: Identifier-Aware Unified Pre-Trained
Encoder-Decoder Models for Code Understanding and
Generation." arXiv, arXiv:2109.00859, 2021.

[5]Austin, Jacob, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, et al. "Web-Scale
Language Models for Program Synthesis." arXiv,
arXiv:2103.03874, 2021.

© 2025, JOIREM |www.joirem.com| Page 4

ISSN (0) 3107-6696

