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Abstract - Efficient communication between high-speed and 

low-speed components in System-on-Chip (SoC) architectures 
requires reliable protocol conversion mechanisms. The AMBA 
AHB (Advanced High-Performance Bus) and APB (Advanced 
Peripheral Bus) represent two widely adopted communication 
protocols serving distinct classes of system components. This 
work presents the complete design, RTL implementation, 
simulation, and synthesis analysis of an AHB to APB protocol 
converter. 

The bridge translates high-speed, pipelined AHB transactions 
into simple, non-pipelined APB operations using a finite-state-
machine (FSM)-based controller. The architecture supports a 
single AHB master, four APB slaves, and parameterized 512-
bit wide data/address paths. Functional verification is 
performed using Cadence Xcelium, while synthesis and timing 
analysis are carried out using Cadence Genus. Simulation 
confirms correct protocol conversion, APB sequencing, and 
data handling. Synthesis results further validate area feasibility, 
clock performance around 100 MHz, and predictable power 
consumption. This work demonstrates a complete, 
synthesizable AMBA-compliant bridge suitable for SoC 
subsystem integration. 

Keywords - AHB, APB, AMBA protocol, Cadence Xcelium, 
FSM, Verilog RTL, protocol bridge, SoC bus architecture. 
 

I. Introduction  

Modern System-on-Chip (SoC) platforms integrate multiple 
intellectual property (IP) blocks that differ in performance, 
complexity, and communication needs. To meet these diverse 
requirements, ARM’s AMBA (Advanced Microcontroller Bus 
Architecture) introduces several bus protocols, among which 
AHB and APB are widely used. 

 AHB handles high-speed, high-bandwidth system 
components such as processors and DMA engines. 

 APB supports low-power, low-complexity 
peripherals such as GPIOs, UARTs, and timers. 

Because these protocols differ in timing, signaling, and 
operational philosophy, direct interaction between AHB and 
APB devices is not possible. A bridge is required to translate 
AHB transactions into APB-compliant sequences. 
The present work focuses on designing a synthesizable AHB to 
APB protocol converter using Verilog RTL. The bridge 
supports four APB peripherals with a configurable 512-bit 
datapath. The controller uses an FSM-based approach to 
manage timing, handshaking, and signal sequencing. The 
design is verified through extensive simulation and synthesized 
to evaluate area, timing, and power characteristics. 

 
Fig. 1. Block diagram of the AHB to APB bridge 

 
II. RELATED WORK 

Several research efforts have examined the design and 
verification of AHB-to-APB bridges as essential elements in 
SoC interconnect systems. These works address both RTL-



Journal Publication of International Research for Engineering and Management (JOIREM) 
Volume: 03 Issue: 11 | Nov-2025 

ISSN (O) 3107-6696 

 

© 2025, JOIREM      |www.joirem.com|        Page 2         ISSN (O) 3107-6696 

level implementation and protocol validation, offering different 
perspectives on the design constraints and challenges of 
AMBA-based communication architectures. 
Koundinya [1] proposed a VHDL-based bridge model for 
AHB2APB protocol conversion that emphasized structural 
simplicity and verification efficiency. Similarly, Sharma et al. 
[2] implemented the bridge using Verilog and demonstrated 
RTL-level synthesis suited for ASIC SoC environments. These 
studies reflect the standard approach in industry to maintain 
compliance with the AMBA specification by focusing on the 
fundamental handshaking and state transitions required for 
basic transaction support. 
Deshpande and Sadakale [3] emphasized the verification of the 
bridge design using System Verilog and Universal Verification 
Methodology (UVM), confirming signal integrity and transfer 
logic at the transaction level. Their work, although focused on 
verification, aligns with the goals of this project, which also 
aims to simulate the signal-level behaviour rather than fabricate 
physical layouts. 
Other notable contributions include Prakash et al. [4] and M. 
Bn et al. [5], who discussed the role of intermediate buffer 
stages, enable signals, and control logic within AHB–APB 
conversion. These studies reaffirm the bridge's responsibility to 
manage signal protocol mismatches while maintaining system 
synchronization. 
 

III. ARCHITECTURE OVERVIEW 

The AHB to APB protocol converter is designed as a modular 
bridge that translates high-speed, pipelined AHB transactions 
into simple, non-pipelined APB operations. The architecture 
follows the AMBA 2.0 specification and supports four APB 
slave peripherals with parameterized 512-bit address and data 
buses. 

 
A . AHB Slave Interface 
The AHB Slave Interface receives transactions from the AHB 
master and performs the following functions: 

 Captures incoming AHB signals such as HADDR, 
HWRITE, HTRANS, HWDATA, and HREADYIN. 

 Detects valid transfers by monitoring HTRANS[1] 
and HREADYIN. 

 Implements address decoding logic to select one of 
four APB slaves through a one-hot PSELx[3:0] signal. 

 Generates HREADYOUT, indicating to the AHB 
master whether the bridge is ready to accept new 
transactions. 

 Holds latched data stable for the APB transfer 
duration. 

 
B. APB Controller (FSM) 

The APB controller is the central element of the protocol 
conversion process. It manages the timing and control 
sequencing required for APB transactions. An eight-state FSM 
governs the communication: 

 ST_IDLE – Bridge is idle and waits for a valid AHB 
transfer 

 ST_READ – Latches read address/control and asserts 
PSELx 

 ST_RENABLE – Asserts PENABLE and captures 
PRDATA 

 ST_WWAIT – Temporary synchronization wait for 
writes 

 ST_WRITE – Asserts PSELx and prepares write data 
 ST_WENABLE – Asserts PENABLE to complete 

write 
 ST_WRITEP / ST_WENABLEP – Handle pipelined 

back-to-back writes by initiating the second APB 
transfer immediately after the first transfer's 
SETUP/ENABLE phase, respectively, without 
returning to IDLE. 

The FSM ensures that every APB transfer follows the 
mandatory sequence: 

1. SETUP phase – PSEL = 1, PENABLE = 0 
2. ENABLE phase – PSEL = 1, PENABLE = 1 

 
C . APB Interface 
The APB interface generates all necessary APB signals during 
the SETUP and ENABLE phases: 

 PADDR ← HADDR 
 PWRITE ← HWRITE 
 PWDATA ← HWDATA 
 PSELx (one-hot slave select) 
 PENABLE (asserted only during ENABLE phase) 
 HRDATA ← PRDATA (for read transfers) 

This module ensures proper mapping of AHB signals to APB-
specific handshake lines and performs data return for read 
operations. 
 

 
Fig. 1. Example SoC architecture showing AHB-APB bridge 

integration. 

 
IV. DESIGN METHODOLOGY 
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The design of the AHB–APB bridge follows a structured 
workflow that ensures protocol compliance, synthesizable RTL 
implementation, and correct functional operation. The 
methodology includes requirement analysis, RTL architectural 
planning, implementation, simulation-based verification, and 
synthesis evaluation. 

 
A. RTL Architecture Specification 
A modular architecture was defined to simplify implementation 
and improve scalability. 
It consists of: 

 AHB Slave Interface: Captures AHB signals, 
performs address decoding, and generates 
HREADYOUT. 

 APB Controller FSM: Implements SETUP and 
ENABLE phases and drives PSEL, PENABLE, and 
PWRITE. 

 APB Interface Unit: Generates final APB signals and 
routes PRDATA back to AHB. 

 Top-Level Integration: Connects all modules and 
defines global ports such as Hclk, Hresetn, and APB 
bus signals. 

Clear module boundaries ensure easier debugging and 
reusability. 
 
B. RTL Implementation 
The bridge was implemented in fully synthesizable Verilog 
HDL.Non-blocking assignments were used for sequential 
logic, and the FSM was modeled using symbolic state names 
for clarity. Parameterized bus widths (e.g., parameter WIDTH 
= 512) allow quick scaling of datapath size.Only synthesizable 
constructs were used, and each functional block—AHB slave, 
APB controller, APB interface, and top module—was coded 
separately to improve maintainability and verification 
efficiency. 
 
C. Simulation and Functional Verification 
A Verilog testbench was created to verify protocol correctness. 
The environment uses a 100 MHz clock and an active-low reset 
to initialize the bridge. Task-based ahb_write and ahb_read 
procedures generate controlled AHB transactions, while a 
simple APB slave model provides predictable PRDATA values 
for read operations. 
Waveform dumping was enabled to analyze SETUP and 
ENABLE sequencing, address/data propagation, and 
handshake timing. Simulation results showed correct one-hot 
PSEL decoding, PENABLE asserted exactly one cycle after 
PSEL, stable PWDATA during APB write transfers, and 
accurate capture and forwarding of PRDATA to HRDATA 
during reads. The bridge responded with proper 
HREADYOUT behavior, completing each transfer according 
to AMBA protocol rules. 

 
D. Synthesis and Analysis 
The RTL was synthesized using Cadence Genus to evaluate 
hardware feasibility. 
Synthesis provided area estimates, timing analysis, and power 
results using standard-cell libraries. The design meets timing 
requirements, supports operation near 100 MHz, and exhibits 
predictable area and power characteristics consistent with wide 
512-bit datapaths. 

 
Fig. 3.Synthesis of AHB-APB Bridge 

V. RESULTS AND DISCUSSION 

The bridge was simulated using Cadence Xcelium. Waveforms 
were captured for both AHB write and read transactions and 
analyzed against AMBA protocol requirements. The following 
subsections describe the observed behavior. 
 
A . APB Write Operation 
During a write transfer, the AHB master drives a valid address 
and write data along with HWRITE=1 and 
HTRANS=NONSEQ. The bridge responds by asserting the 
appropriate PSELx based on address decoding and initiating a 
SETUP phase followed by an ENABLE phase. 
Observed waveform behavior: 

 PSELx is asserted in the SETUP cycle when 
HREADYIN=1 and a valid transfer is detected. 

 PENABLE transitions high exactly one cycle later, 
marking the ENABLE phase. 

 PWDATA remains stable throughout the ENABLE 
phase. 

 HREADYOUT stays low during APB access and 
returns high once the transaction completes. 

Comparison with expected protocol behavior: 
AMBA APB specification mandates that PSEL must be 
asserted before PENABLE, and PENABLE must be asserted 
only in the cycle following SETUP. The waveform confirms 
this timing exactly, validating correct FSM sequencing. 
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Fig. 3. Simulation waveform of APB write operation. 

 
B. APB Read Operation 
For a read cycle, the AHB master provides a valid address with 
HWRITE=0. The bridge initiates APB SETUP and ENABLE 
phases and captures PRDATA from the selected slave. 
Observed waveform behavior: 

 PSELx is asserted according to the decoded slave 
address. 

 PENABLE asserts one cycle after PSELx, entering the 
ENABLE phase. 

 PRDATA from the APB slave is sampled during the 
ENABLE phase. 

 HRDATA on the AHB side updates immediately after 
PRDATA is captured. 

 HREADYOUT returns high to signal completion to 
the AHB master. 

Comparison with expected protocol behavior: 
According to APB timing rules, read data is valid during the 
ENABLE phase. The waveform confirms proper capture, 
forwarding, and synchronization of PRDATA. 

 
Fig. 4. Simulation waveform of APB read operation 

 
C. Power Analysis 

Power estimation was performed in Cadence Genus for both 
the AHB slave interface and the APB controller. The results are 
summarized in Table 1. 

 

 

Fig. 5.Power report of APB Controller 

 

Fig. 6.Power report of AHB Slave 

TABLE I — Module-Level Power Summary 

Module Cell
s 

Leaka
ge 
(nW) 

Interna
l (nW) 

Net 
(nW) 

Switchi
ng (nW) 

AHB 
Slave 

152
3 

79,928.
6 

296,904
.4 

74,971.
3 

371,875.
7 

APB 
Controll
er 

463 22,406.
6 

366,540
.4 

6,855.9 43,506.3 

Key Observations 
 The AHB slave consumes more total dynamic 

power, mainly because it handles wide 512-bit buses 
and performs address/data latching. 

 The APB controller uses fewer cells and shows 
lower switching power, consistent with its control-
logic-dominated behavior. 
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 Leakage power remains relatively small in both 
modules. 

 Internal power of the APB controller is moderately 
high due to frequent FSM transitions. 

D. Discussion 
The results confirm that the implemented AHB–APB bridge: 

 Correctly performs protocol conversion with full 
AMBA compliance 

 Generates accurate APB timing and handshake signals 

 Handles pipelined AHB inputs and non-pipelined 
APB outputs seamlessly 

 Demonstrates stability across all read and write 
scenarios 

 Meets synthesis constraints for area, timing, and 
power 

 Is fully synthesizable and suitable for SoC integration 
Overall, the design exhibits robust performance and 
correctness, validating the effectiveness of the FSM-based 
approach and modular RTL architecture. 

 
VI. CONCLUSION 

This work successfully presented the complete design, Verilog 
RTL implementation, and synthesis analysis of an AHB to 
APB protocol bridge. Addressing the need for reliable 
communication between high-speed and low-speed 
components in SoC architectures, the bridge effectively 
translates pipelined AHB transactions into simple, non-
pipelined APB operations. 
The core of the converter, an eight-state FSM controller, 
ensured full AMBA compliance by correctly managing the 
timing, handshaking, and signal sequencing required for both 
APB SETUP and ENABLE phases. Functional verification 
using Cadence Xcelium demonstrated: 

 Accurate one-hot slave decoding and proper assertion 
of PSELx and PENABLE signals. 

 Correct data handling, including stable PWDATA 
during writes and synchronized capture of  PRDATA 
and forwarding to HRDATA during reads. 

Synthesis results using Cadence Genus confirmed the design’s 
hardware feasibility, supporting operation around 100 MHz. 
Power analysis highlighted that the AHB Slave Interface 
consumed the majority of the dynamic power due to its role 
in handling the wide 512-bit data and address buses, while the 
APB Controller exhibited lower power consumption consistent 
with its control-logic-dominated function7. 
Overall, the modular RTL architecture and FSM-based 
approach resulted in a robust, fully synthesizable protocol 
converter suitable for integration into complex SoC 
subsystems8888. 

For future work, this design could be extended to incorporate 
support for multiple AHB masters to further enhance its 
performance and utility within larger, more complex bus matrix 
systems. 
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