
Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 1 ISSN (O) 3107-6696

Design and Simulation of an AHB to APB Protocol Bridge

 Prof. Lohit Javali
1
, Mr.Shankar M Halyal

2
, Miss.Seema N Timmanagoudar3

1Assistant Professor, Department of Electronics and Communication Engineering, Tontadarya College Of
Engineering Gadag, Karnataka, India

Lohit.javali@gmail.com
2 Student, Department of Electronics and Communication Engineering Tontadarya College Of Engineering Gadag,

Karnataka, India
sagarhalyal3@gmail.com

3Student, Department of Electronics and Communication Engineering, Tontadarya College Of Engineering Gadag,
Karnataka, India

seema.nt004@gmail.com
---***---
Abstract - Efficient communication between high-speed and

low-speed components in System-on-Chip (SoC) architectures
requires reliable protocol conversion mechanisms. The AMBA
AHB (Advanced High-Performance Bus) and APB (Advanced
Peripheral Bus) represent two widely adopted communication
protocols serving distinct classes of system components. This
work presents the complete design, RTL implementation,
simulation, and synthesis analysis of an AHB to APB protocol
converter.

The bridge translates high-speed, pipelined AHB transactions
into simple, non-pipelined APB operations using a finite-state-
machine (FSM)-based controller. The architecture supports a
single AHB master, four APB slaves, and parameterized 512-
bit wide data/address paths. Functional verification is
performed using Cadence Xcelium, while synthesis and timing
analysis are carried out using Cadence Genus. Simulation
confirms correct protocol conversion, APB sequencing, and
data handling. Synthesis results further validate area feasibility,
clock performance around 100 MHz, and predictable power
consumption. This work demonstrates a complete,
synthesizable AMBA-compliant bridge suitable for SoC
subsystem integration.

Keywords - AHB, APB, AMBA protocol, Cadence Xcelium,
FSM, Verilog RTL, protocol bridge, SoC bus architecture.

I. Introduction

Modern System-on-Chip (SoC) platforms integrate multiple
intellectual property (IP) blocks that differ in performance,
complexity, and communication needs. To meet these diverse
requirements, ARM’s AMBA (Advanced Microcontroller Bus
Architecture) introduces several bus protocols, among which
AHB and APB are widely used.

 AHB handles high-speed, high-bandwidth system
components such as processors and DMA engines.

 APB supports low-power, low-complexity
peripherals such as GPIOs, UARTs, and timers.

Because these protocols differ in timing, signaling, and
operational philosophy, direct interaction between AHB and
APB devices is not possible. A bridge is required to translate
AHB transactions into APB-compliant sequences.
The present work focuses on designing a synthesizable AHB to
APB protocol converter using Verilog RTL. The bridge
supports four APB peripherals with a configurable 512-bit
datapath. The controller uses an FSM-based approach to
manage timing, handshaking, and signal sequencing. The
design is verified through extensive simulation and synthesized
to evaluate area, timing, and power characteristics.

Fig. 1. Block diagram of the AHB to APB bridge

II. RELATED WORK

Several research efforts have examined the design and
verification of AHB-to-APB bridges as essential elements in
SoC interconnect systems. These works address both RTL-

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 2 ISSN (O) 3107-6696

level implementation and protocol validation, offering different
perspectives on the design constraints and challenges of
AMBA-based communication architectures.
Koundinya [1] proposed a VHDL-based bridge model for
AHB2APB protocol conversion that emphasized structural
simplicity and verification efficiency. Similarly, Sharma et al.
[2] implemented the bridge using Verilog and demonstrated
RTL-level synthesis suited for ASIC SoC environments. These
studies reflect the standard approach in industry to maintain
compliance with the AMBA specification by focusing on the
fundamental handshaking and state transitions required for
basic transaction support.
Deshpande and Sadakale [3] emphasized the verification of the
bridge design using System Verilog and Universal Verification
Methodology (UVM), confirming signal integrity and transfer
logic at the transaction level. Their work, although focused on
verification, aligns with the goals of this project, which also
aims to simulate the signal-level behaviour rather than fabricate
physical layouts.
Other notable contributions include Prakash et al. [4] and M.
Bn et al. [5], who discussed the role of intermediate buffer
stages, enable signals, and control logic within AHB–APB
conversion. These studies reaffirm the bridge's responsibility to
manage signal protocol mismatches while maintaining system
synchronization.

III. ARCHITECTURE OVERVIEW

The AHB to APB protocol converter is designed as a modular
bridge that translates high-speed, pipelined AHB transactions
into simple, non-pipelined APB operations. The architecture
follows the AMBA 2.0 specification and supports four APB
slave peripherals with parameterized 512-bit address and data
buses.

A . AHB Slave Interface
The AHB Slave Interface receives transactions from the AHB
master and performs the following functions:

 Captures incoming AHB signals such as HADDR,
HWRITE, HTRANS, HWDATA, and HREADYIN.

 Detects valid transfers by monitoring HTRANS[1]
and HREADYIN.

 Implements address decoding logic to select one of
four APB slaves through a one-hot PSELx[3:0] signal.

 Generates HREADYOUT, indicating to the AHB
master whether the bridge is ready to accept new
transactions.

 Holds latched data stable for the APB transfer
duration.

B. APB Controller (FSM)

The APB controller is the central element of the protocol
conversion process. It manages the timing and control
sequencing required for APB transactions. An eight-state FSM
governs the communication:

 ST_IDLE – Bridge is idle and waits for a valid AHB
transfer

 ST_READ – Latches read address/control and asserts
PSELx

 ST_RENABLE – Asserts PENABLE and captures
PRDATA

 ST_WWAIT – Temporary synchronization wait for
writes

 ST_WRITE – Asserts PSELx and prepares write data
 ST_WENABLE – Asserts PENABLE to complete

write
 ST_WRITEP / ST_WENABLEP – Handle pipelined

back-to-back writes by initiating the second APB
transfer immediately after the first transfer's
SETUP/ENABLE phase, respectively, without
returning to IDLE.

The FSM ensures that every APB transfer follows the
mandatory sequence:

1. SETUP phase – PSEL = 1, PENABLE = 0
2. ENABLE phase – PSEL = 1, PENABLE = 1

C . APB Interface
The APB interface generates all necessary APB signals during
the SETUP and ENABLE phases:

 PADDR ← HADDR
 PWRITE ← HWRITE
 PWDATA ← HWDATA
 PSELx (one-hot slave select)
 PENABLE (asserted only during ENABLE phase)
 HRDATA ← PRDATA (for read transfers)

This module ensures proper mapping of AHB signals to APB-
specific handshake lines and performs data return for read
operations.

Fig. 1. Example SoC architecture showing AHB-APB bridge

integration.

IV. DESIGN METHODOLOGY

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 3 ISSN (O) 3107-6696

The design of the AHB–APB bridge follows a structured
workflow that ensures protocol compliance, synthesizable RTL
implementation, and correct functional operation. The
methodology includes requirement analysis, RTL architectural
planning, implementation, simulation-based verification, and
synthesis evaluation.

A. RTL Architecture Specification
A modular architecture was defined to simplify implementation
and improve scalability.
It consists of:

 AHB Slave Interface: Captures AHB signals,
performs address decoding, and generates
HREADYOUT.

 APB Controller FSM: Implements SETUP and
ENABLE phases and drives PSEL, PENABLE, and
PWRITE.

 APB Interface Unit: Generates final APB signals and
routes PRDATA back to AHB.

 Top-Level Integration: Connects all modules and
defines global ports such as Hclk, Hresetn, and APB
bus signals.

Clear module boundaries ensure easier debugging and
reusability.

B. RTL Implementation
The bridge was implemented in fully synthesizable Verilog
HDL.Non-blocking assignments were used for sequential
logic, and the FSM was modeled using symbolic state names
for clarity. Parameterized bus widths (e.g., parameter WIDTH
= 512) allow quick scaling of datapath size.Only synthesizable
constructs were used, and each functional block—AHB slave,
APB controller, APB interface, and top module—was coded
separately to improve maintainability and verification
efficiency.

C. Simulation and Functional Verification
A Verilog testbench was created to verify protocol correctness.
The environment uses a 100 MHz clock and an active-low reset
to initialize the bridge. Task-based ahb_write and ahb_read
procedures generate controlled AHB transactions, while a
simple APB slave model provides predictable PRDATA values
for read operations.
Waveform dumping was enabled to analyze SETUP and
ENABLE sequencing, address/data propagation, and
handshake timing. Simulation results showed correct one-hot
PSEL decoding, PENABLE asserted exactly one cycle after
PSEL, stable PWDATA during APB write transfers, and
accurate capture and forwarding of PRDATA to HRDATA
during reads. The bridge responded with proper
HREADYOUT behavior, completing each transfer according
to AMBA protocol rules.

D. Synthesis and Analysis
The RTL was synthesized using Cadence Genus to evaluate
hardware feasibility.
Synthesis provided area estimates, timing analysis, and power
results using standard-cell libraries. The design meets timing
requirements, supports operation near 100 MHz, and exhibits
predictable area and power characteristics consistent with wide
512-bit datapaths.

Fig. 3.Synthesis of AHB-APB Bridge

V. RESULTS AND DISCUSSION

The bridge was simulated using Cadence Xcelium. Waveforms
were captured for both AHB write and read transactions and
analyzed against AMBA protocol requirements. The following
subsections describe the observed behavior.

A . APB Write Operation
During a write transfer, the AHB master drives a valid address
and write data along with HWRITE=1 and
HTRANS=NONSEQ. The bridge responds by asserting the
appropriate PSELx based on address decoding and initiating a
SETUP phase followed by an ENABLE phase.
Observed waveform behavior:

 PSELx is asserted in the SETUP cycle when
HREADYIN=1 and a valid transfer is detected.

 PENABLE transitions high exactly one cycle later,
marking the ENABLE phase.

 PWDATA remains stable throughout the ENABLE
phase.

 HREADYOUT stays low during APB access and
returns high once the transaction completes.

Comparison with expected protocol behavior:
AMBA APB specification mandates that PSEL must be
asserted before PENABLE, and PENABLE must be asserted
only in the cycle following SETUP. The waveform confirms
this timing exactly, validating correct FSM sequencing.

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 4 ISSN (O) 3107-6696

Fig. 3. Simulation waveform of APB write operation.

B. APB Read Operation
For a read cycle, the AHB master provides a valid address with
HWRITE=0. The bridge initiates APB SETUP and ENABLE
phases and captures PRDATA from the selected slave.
Observed waveform behavior:

 PSELx is asserted according to the decoded slave
address.

 PENABLE asserts one cycle after PSELx, entering the
ENABLE phase.

 PRDATA from the APB slave is sampled during the
ENABLE phase.

 HRDATA on the AHB side updates immediately after
PRDATA is captured.

 HREADYOUT returns high to signal completion to
the AHB master.

Comparison with expected protocol behavior:
According to APB timing rules, read data is valid during the
ENABLE phase. The waveform confirms proper capture,
forwarding, and synchronization of PRDATA.

Fig. 4. Simulation waveform of APB read operation

C. Power Analysis

Power estimation was performed in Cadence Genus for both
the AHB slave interface and the APB controller. The results are
summarized in Table 1.

Fig. 5.Power report of APB Controller

Fig. 6.Power report of AHB Slave

TABLE I — Module-Level Power Summary

Module Cell
s

Leaka
ge
(nW)

Interna
l (nW)

Net
(nW)

Switchi
ng (nW)

AHB
Slave

152
3

79,928.
6

296,904
.4

74,971.
3

371,875.
7

APB
Controll
er

463 22,406.
6

366,540
.4

6,855.9 43,506.3

Key Observations
 The AHB slave consumes more total dynamic

power, mainly because it handles wide 512-bit buses
and performs address/data latching.

 The APB controller uses fewer cells and shows
lower switching power, consistent with its control-
logic-dominated behavior.

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 5 ISSN (O) 3107-6696

 Leakage power remains relatively small in both
modules.

 Internal power of the APB controller is moderately
high due to frequent FSM transitions.

D. Discussion
The results confirm that the implemented AHB–APB bridge:

 Correctly performs protocol conversion with full
AMBA compliance

 Generates accurate APB timing and handshake signals

 Handles pipelined AHB inputs and non-pipelined
APB outputs seamlessly

 Demonstrates stability across all read and write
scenarios

 Meets synthesis constraints for area, timing, and
power

 Is fully synthesizable and suitable for SoC integration
Overall, the design exhibits robust performance and
correctness, validating the effectiveness of the FSM-based
approach and modular RTL architecture.

VI. CONCLUSION

This work successfully presented the complete design, Verilog
RTL implementation, and synthesis analysis of an AHB to
APB protocol bridge. Addressing the need for reliable
communication between high-speed and low-speed
components in SoC architectures, the bridge effectively
translates pipelined AHB transactions into simple, non-
pipelined APB operations.
The core of the converter, an eight-state FSM controller,
ensured full AMBA compliance by correctly managing the
timing, handshaking, and signal sequencing required for both
APB SETUP and ENABLE phases. Functional verification
using Cadence Xcelium demonstrated:

 Accurate one-hot slave decoding and proper assertion
of PSELx and PENABLE signals.

 Correct data handling, including stable PWDATA
during writes and synchronized capture of PRDATA
and forwarding to HRDATA during reads.

Synthesis results using Cadence Genus confirmed the design’s
hardware feasibility, supporting operation around 100 MHz.
Power analysis highlighted that the AHB Slave Interface
consumed the majority of the dynamic power due to its role
in handling the wide 512-bit data and address buses, while the
APB Controller exhibited lower power consumption consistent
with its control-logic-dominated function7.
Overall, the modular RTL architecture and FSM-based
approach resulted in a robust, fully synthesizable protocol
converter suitable for integration into complex SoC
subsystems8888.

For future work, this design could be extended to incorporate
support for multiple AHB masters to further enhance its
performance and utility within larger, more complex bus matrix
systems.

References

[1] T. Koundinya, "Design and Implementation of AMBA
based AHB2APB Bridge," International Journal of
Engineering Research & Technology (IJERT), vol. 11,
no. 6, pp. 1–5, June 2022. [Online]. Available:
https://www.ijert.org/design-and-implementation-of-
amba-based-ahb2apb-bridge

[2] S. Sharma, R. Nangia, and N. K. Shukla, "Design and
RTL Implementation for AHB-APB Bridge on SoC,"
Journal of VLSI Design Tools & Technology, vol. 6, no.
2, pp. 1–6, 2019. [Online]. Available:
https://engineeringjournals.stmjournals.in/index.php/Jo
VDTT/article/view/2986

[3] N. Deshpande and R. Sadakale, "AMBA AHB to APB
Bridge Protocol Verification Using System Verilog," in
Proc. 2023 First International Conference on Advances
in Electrical, Electronics and Computational
Intelligence (ICAEECI), Pune, India, Oct. 2023, pp. 1–
6. doi: 10.1109/ICAEECI58247.2023.10370951.
[Online]. Available:
https://www.researchgate.net/publication/377137811_
AMBA_AHB_to_APB_Bridge_Protocol_Verification_
Using_System_Verilog

[4] P. B. Prakash, P. N. Reddy, M. S. Reddy, R. V. Kumar,
and G. B. Sreeja, "Design of AMBA Based AHB2APB
Bridge Protocol," EasyChair Preprint, no. 7890, pp. 1–
5, May 2022. [Online]. Available:
https://easychair.org/publications/preprint/MhgTD

[5] M. Bn and P. Parameshwarappa, "Design and
Implementation of AMBA ASB APB Bridge," in Proc.
2013 International Conference on Fuzzy Theory and Its
Applications (iFUZZY), Taipei, Taiwan, Dec. 2013, pp.
1–6. doi: 10.1109/iFuzzy.2013.6825442. [Online].
Available:
https://www.researchgate.net/publication/269304013_
Design_and_implementation_of_AMBA_ASB_APB_b
ridge

[6] ARM Ltd., AMBA 3 AHB-Lite Protocol Specification,

ARM IHI 0033A, 2006. [Online]. Available:
https://developer.arm.com/documentation/ihi0033

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 6 ISSN (O) 3107-6696

[7] ARM Ltd., AMBA 3 APB Protocol Specification,
ARM IHI 0024C, 2004. [Online]. Available:
https://developer.arm.com/documentation/ihi0024

[8] S. Kundu and A. Chakraborty, “Design and
Verification of AMBA AHB-APB Bridge Using
SystemVerilog,” in Proc. IEEE Int. Conf. Computing,
Communication, and Automation, 2019, pp. 1–6. doi:
10.1109/ICCCA.2019.8777721

[9] S. Kundu and A. Chakraborty, “Design and
Verification of AMBA AHB-APB Bridge Using
SystemVerilog,” in Proc. IEEE Int. Conf. Computing,
Communication, and Automation, 2019, pp. 1–6. doi:
10.1109/ICCCA.2019.8777721.

