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Abstract - The prompt and precise identification of heart 
abnormalities from biological information is essential in 
advanced healthcare systems. This paper introduces an AI-
based hybrid framework for real-time detection of cardiac 
anomalies by combining electrocardiogram (ECG) and 
photoplethysmogram (PPG) signal processing with 
sophisticated machine learning methodologies. The suggested 
system employs extensive preprocessing and augmentation 
techniques, such as Gaussian noise injection, amplitude 
scaling, and temporal shifting, to increase signal diversity and 
enhance model generalization robustness. Morphological and 
temporal cardiac characteristics—including P-wave duration, 
PR interval, QRS complex width, ST-segment level, T-wave 
duration, and Pulse Transit Time (PTT)—are obtained utilizing 
the WFDB, NeuroKit2, and BioSPPy frameworks. Annotation-
assisted feature labeling and automated P-wave delineation are 
integrated to guarantee dependable beat-level characterisation. 
An ensemble CatBoost model is utilized for classification, 
exhibiting enhanced efficacy compared to traditional Random 
Forest classifiers in managing non-linear, multi-dimensional 
biological data. The model's efficacy is assessed by cross-
validation and confusion matrix analysis, resulting in a mean 
accuracy enhancement over 15% relative to baseline 
approaches. The findings underscore the efficacy of gradient 
boosting topologies for comprehensive cardiac health 
evaluation. This framework establishes a basis for real-time, 
AI-enhanced heart monitoring and can be further incorporated 
into smart wearable and telemedicine systems to enable early 
detection and predictive diagnosis in cardiovascular healthcare. 
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1. INTRODUCTION 
 
  Crdiovascular diseases (CVDs) remain the primary cause of 
death worldwide, and early diagnosis of cardiac and respiratory 
abnormalities is crucial for reducing mortality and increasing 
quality of life. ECG-based diagnostics have undergone a 
dramatic change thanks to recent developments in deep learning 
and artificial intelligence (AI), which make it possible to 

automatically identify arrhythmias, ischemia, and other cardiac 
conditions from lengthy recordings that would be impossible to 
manually interpret [1]. The majority of conventional monitoring 
systems, however, are either single-modal, concentrating just on 
ECG, or they use manually designed characteristics and 
threshold-based criteria to identify abnormalities. These 
techniques are very susceptible to noise, device artifacts, and 
inter-patient variability, and struggle with the complexity of 
real-world physiological signals [2]. Multimodal physiological 
monitoring is also becoming more popular as a means of 
enhancing diagnostic coverage and robustness. The 
photoplethysmogram (PPG), which is heavily impacted by 
vascular tone and respiration, indicates variations in peripheral 
blood volume, whereas the electrocardiogram (ECG) records 
the electrical activity of the heart. Combining ECG and PPG 
data has been shown in recent studies to improve respiratory rate 
estimate and more precisely describe cardio-respiratory 
interactions [3]. PPG alone can convey enough information for 
high-quality ECG waveform reconstruction under a deep 
learning framework, as demonstrated by complementary 
research that used a hybrid attention-based CNN–BiLSTM 
network to reconstruct ECG signals directly from PPG [4]. 
Together, these findings demonstrate that cross-modal or 
multimodal modeling of PPG and ECG is a potent avenue for 
intelligent cardiovascular monitoring.  
     Simultaneously, explainability and anomaly detection in 
real-time monitoring systems are becoming increasingly 
important. A lightweight autoencoder is installed on the 
wearable node, and KernelSHAP explanations are utilized to 
differentiate between real medical events and sensor 
malfunctions in one study's explainable AI (XAI) framework for 
event and anomaly identification in healthcare monitoring 
utilizing wearable IoT sensors [5]. According to their research, 
next-generation monitoring systems must (i) be able to detect 
irregularities in streaming physiological data online and (ii) 
have transparent reasoning that physicians can understand and 
rely on [5]. In order to satisfy clinical and regulatory 
requirements, deep learning models for ECG and physiological 
monitoring are increasingly including attention processes and 
explanation techniques, according to other recent studies [2].   
    The current study builds on these developments by 
implementing a multimodal patient monitoring system that uses 
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a hybrid deep learning and gradient boosting pipeline to detect 
abnormalities by integrating ECG, PPG, and breathing inputs. 
The MIT-BIH Arrhythmia Database for ECG and the BIDMC 
PPG & Respiration Database for PPG and respiratory 
waveforms are publicly accessible benchmark datasets that are 
used. After automatically downloading and pre-processing these 
data, they are divided into overlapping fixed-length windows 
that correspond to transient physiological states. Initial labels 
(normal vs. abnormal) are assigned using a straightforward 
variance-based algorithm on the respiration channel, with the 
assumption that decreased breathing variability denotes 
abnormality. For every window, a three-channel input tensor 
depicting joint cardio-respiratory dynamics is created by 
synchronizing and stacking the ECG, PPG, and respiration 
segments.  
   We use TensorFlow/Keras to create a CNN–BiLSTM 
architecture on top of this multimodal representation. Max-
pooling lowers dimensionality and increases noise robustness, 
while convolutional layers identify local morphological patterns 
from the data. A bidirectional LSTM (BiLSTM) layer is 
appropriate for modeling rhythmic patterns and transient 
disturbances throughout the window because it can record 
temporal dependencies in both forward and backward 
directions. Regularization is provided by dropout layers, and the 
inherent imbalance between normal and abnormal data is 
addressed by class weighting. Early halting techniques enhance 
generalization and lessen overfitting. According to experimental 
results, this CNN–BiLSTM model has a high sensitivity for 
aberrant segments and a test accuracy of almost 99% on the 
multimodal dataset [4]. These findings are in line with other 
recent research showing that for ECG and multimodal 
physiological data, hybrid CNN–RNN architectures perform 
better than pure CNN or pure LSTM systems [1].  
    The system also assesses feature-based ensemble classifiers 
like CatBoost and XGBoost to supplement the deep sequence 
model. These models achieve near-perfect performance on the 
identical binary classification problem after being trained using 
the multimodal windows that have been flattened into high-
dimensional feature vectors. These tree-based models' 
incorporation of SHAP-based explanations offers insights into 
feature importance and is consistent with contemporary XAI 
techniques in healthcare anomaly detection [5]. This dual 
modeling approach, which uses gradient boosting for feature-
based interpretation and deep CNN–BiLSTM for raw waveform 
analysis, provides deployment flexibility for wearable 
platforms, cloud servers, and embedded IoT devices.  
  By employing automated peak-detection to extract respiratory 
rate (RR) from the respiration channel and heart-rate (HR) from 
the ECG, physiological validity is further investigated. The 
distributions of HR and RR across normal and pathological 
groups demonstrate important differences: abnormal segments 

display altered respiration variability and reduced heart-rate 
rhythm, validating the accuracy of the labeling heuristic and 
model’s decision limits [4]. This kind of validation makes sure 
the model is not just fitting noise and that it captures patterns 
that are physiologically reasonable. 
 
1.1. Challenges in the Heart Rate Detection 
 
 Heart Rate (HR) is often derived from the Electrocardiogram 
(ECG) or Photoplethysmogram (PPG) signals by identifying R-
peaks or equivalent pulse peaks. 
• Motion Artifacts: Both ECG and PPG exhibit significant 
sensitivity to patient movement. Motion can generate 
significant, temporary noise spikes that are frequently 
misidentified as heartbeats, resulting in erroneous heart rate 
measurements, particularly during ambulatory monitoring. 
• Suboptimal Signal Quality (PPG): The PPG signal may 
exhibit weakness or irregularity due to inadequate sensor 
contact, diminished perfusion (impaired blood flow, frequently 
in cold environments or shock), or darker skin pigmentation. 
This renders peak detection unreliable. 
• Arrhythmia Complexity: Abnormal cardiac rhythms 
(arrhythmias) alter the morphology and timing of the ECG/PPG 
waveforms. Basic peak-counting techniques are inadequate for 
intricate arrhythmias such as Atrial Fibrillation, characterized 
by highly variable R-R intervals, or ventricular tachycardia, 
where the signal may be compromised. 
 
1.2. Objectives of the Project 
 To compute and contrast essential physiological 

parameters, namely Heart Rate (HR) and Respiratory Rate 
(RR), between the "Normal" and "Abnormal" data 
segments to delineate the identified respiratory anomaly. 

 To design and assess machine learning models 
(particularly CNN-LSTM, CatBoost, and XGBoost) for 
the automated identification of aberrant respiratory 
situations utilizing integrated physiological inputs. 

 Identify segments indicative of a "Abnormal" respiratory 
condition utilizing a straightforward, variance-based 
criterion on the respiration signal, which serves as a proxy 
for markedly slow or shallow breathing/apnea. 

 Assess the models with common measures such as 
accuracy, precision, recall, F1-score, and the ROC AUC 
curve on a reserved test set. 

 Evaluate and contrast the prediction efficacy of the CNN-
LSTM with the feature-based models, CatBoost and 
XGBoost. 

 Utilize methodologies such as SHAP (SHapley Additive 
exPlanations) to elucidate the significance of features in 
tree-based models. 
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2. Literature Review 
 
  Biomedical monitoring powered by AI has advanced quickly 
to enable the real-time identification of physiological 
anomalies through the use of deep learning-based feature 
extraction and multimodal inputs. The significance of hybrid 
handcrafted and learned features for robust anomaly detection 
was demonstrated by Zhu et al.'s hybrid anomaly detection 
framework, which used 1D-LBP and time-domain statistical 
features fused with an XGBoost classifier to achieve high 
detection efficiency in continuous monitoring environments 
[7]. Even though this methodology was created for structural 
health monitoring, it provides a solid analytical basis for 
identifying biological signal anomalies in situations where 
environmental interference and noise compromise data 
integrity.  
Deep learning models have also shifted toward clinically 
meaningful risk prediction instead of pure classification. An 
explainable deep neural model called HBBI-AI was created by 
Lin et al. to forecast the risk of atrial fibrillation based solely 
on heartbeat-to-heartbeat intervals. Instead of serving as a black 
box prediction, their research revealed autonomic dysfunction 
as a significant physiological antecedent of AF, underscoring 
the potential of interpretable AI in identifying underlying 
illness causes [8].  
   Zhang et al. developed a multiple-instance learning approach 
for arrhythmia identification that eliminates the need for human 
beat labeling by inferring heartbeat-level anomalies using 
rhythm-level annotations. Weak supervision can provide 
clinically reliable fine-grained diagnostic models, as 
demonstrated by their two-stage MIL-based pipeline's 
improved arrhythmia classification [9]. This finding is 
important because intelligent label inference can remove the 
costly burden of expert-level annotation, and high-quality 
annotated ECG datasets are still hard to come by.   
  Other sensor modalities have been investigated recently for 
non-intrusive physiological monitoring in addition to cardiac 
electrical impulses. In order to assess expiratory flow and lung 
capacity without making physical contact, Transue et al. used a 
thermal CO₂ imaging system in conjunction with LSTM 
regression. Their results demonstrated a strong correlation with 
clinical spirometric measures [10]. Their method encourages 
the development of contactless monitoring systems by showing 
that deep temporal models can extract clinically meaningful 
indicators from physiological data that are not electrical.  
Model explainability is becoming a clinical necessity due to the 
growing use of ML-driven monitoring. In order to separate 
actual medical events from sensor mistakes in wearable data 
streams, Abououf et al. suggested an IoT-based anomaly 
detection pipeline that combines lightweight autoencoders with 
KernelSHAP [11]. According to their research, explainable AI 

is crucial for preserving physician confidence as well as 
avoiding false alarms caused by tainted biological signals.  
  Multi-label ECG classification has also incorporated 
sophisticated interpretable deep learning techniques. A CNN–
attention–ResNet hybrid model with SHAP and Grad-CAM 
visual explanations was presented by Zeng et al. [12]. It 
achieved great multi-label accuracy and gave doctors the ability 
to see which ECG areas affected the prediction. Traditional 
ECG classification algorithms fall short in addressing clinical 
transparency issues, which this dual-level interpretability 
architecture directly solves.  
  Signal cross-reconstruction techniques are also emerging to 
reduce sensor dependence. A hybrid attention-based CNN–
BiLSTM network was shown by Ezzat et al. to be capable of 
reconstructing ECG signals from PPG with a significantly 
lower RMSE than current DNN models [13]. According to their 
findings, wearable technology may be able to achieve ECG-
equivalent diagnostic fidelity with just one optical sensor. 
 

3. METHODOLOGY 
 
3.1 Problem Statement 
   
Although artificial intelligence-based cardiac monitoring has 
advanced quickly, the majority of clinical and wearable 
systems still use single-signal ECG analysis or conventional 
feature-engineering methods, which leaves them vulnerable to 
noise, motion artifacts, and patient-specific variability. Due to 
their lack of multimodal physiological context, conventional 
arrhythmia detection techniques have trouble generalizing to 
real-world situations, which can result in missed abnormal 
occurrences or false alarms. Furthermore, current abnormality 
detection frameworks often require manually annotated 
heartbeat labels, making them impractical for large-scale 
deployment where acquiring expert-labeled clinical data is both 
time-consuming and expensive. An intelligent, automated 
diagnosis system that can learn directly from raw multimodal 
biosignals and retain high diagnostic accuracy even in the midst 
of noisy, unbalanced data is therefore desperately needed.  
  There is currently no unified system that integrates 
synchronized ECG, PPG, and respiratory patterns into a real-
time abnormality detection pipeline supported by hybrid deep 
learning and interpretable machine learning models, despite the 
fact that existing literature demonstrates encouraging results in 
isolated domains such as ECG-only deep learning, PPG-based 
signal reconstruction, or explainable IoT anomaly detection. 
Deployable designs that can concurrently take use of waveform 
shape, temporal cardiac-respiratory dynamics, and model 
explainability are also lacking in the healthcare monitoring 
platforms of today. The design and development of a 
multimodal deep learning-enabled patient monitoring system 
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that combines respiration, ECG, and PPG signals, learns 
abnormal physiological patterns using gradient boosting 
models and hybrid CNN–BiLSTM, and offers a scalable 
diagnostic framework appropriate for wearable technology, 
clinical decision support, and continuous monitoring is thus the 
main issue this work attempts to address.  
 
3.2 Multimodal Signal Synchronization 
 
The algorithm initially determines the smallest number of 
accessible segments across all three modalities to guarantee 
correct alignment because the ECG, PPG, and respiration 
signals come from distinct datasets and may generate a varied 
number of segmented windows. To ensure that every ECG 
window precisely matches one PPG and one respiration 
window, any extra segments from the lengthier signals are 
clipped. A unified multimodal input tensor, denoted as X = 
[ECG, PPG, Respiration], is created by stacking the three 
signals along the channel axis once they have been aligned. 
Each sample comprises 1,250 time points across three 
synchronized physiological channels. The final structure of the 
generated dataset is (950, 1250, 3), which denotes 950 
multimodal samples with three channels and 1,250 points 
apiece. Each sample's corresponding target labels are kept 
independently in a label vector y, guaranteeing that each 
multimodal input is matched with the appropriate abnormal or 
normal classification. 
 
3.3 CNN–BiLSTM Deep Learning Model 
 
Convolutional neural networks (CNN) and bidirectional long 
short-term memory (Bi-LSTM) networks are used in the 
suggested system's hybrid deep learning architecture to 
efficiently learn the temporal and spatial properties of 
multimodal physiological inputs. The model starts with a 64-
filter, 1-D convolution layer that automatically captures 
morphological information from the input window, including 
breathing patterns, pulse peaks, and QRS shape. A 
MaxPooling1D layer that highlights prominent features, 
decreases computational load, and decreases temporal 
resolution comes next. After that, a dropout layer with a 0.3 
probability is used to randomly disable neurons during training 
in order to avoid overfitting. The 64-unit Bi-LSTM layer 
receives the extracted features, which allows the model to 
record sequential dependencies from both forward and 
backward time directions. This is a crucial feature for 
identifying irregularities in rhythm. The learned representation 
is subsequently converted into a high-level feature embedding 
by a Dense layer of 64 ReLU-activated neurons. Lastly, to 
differentiate between normal and abnormal segments, a 
Softmax output layer uses binary classification. The Adam 

optimizer with sparse categorical cross-entropy loss is used to 
train the model. To ensure optimal generalization and avoid 
overfitting, an EarlyStopping mechanism tracks validation 
error and automatically stops training when no improvement is 
shown. 
 
3.4 Feature-Based Machine Learning Models 
 
  The suggested method validates the efficacy of handcrafted 
representations for abnormality identification using feature-
based machine learning models in addition to the deep learning 
architecture. This is accomplished by flattening each signal 
window in the same multimodal dataset, which includes 
synchronized ECG, PPG, and respiration segments, into one-
dimensional feature vectors. Then, two potent gradient 
boosting classifiers, CatBoost and XGBoost, are trained using 
these feature vectors. The XGBoost classifier employs 500 
estimators with a maximum depth of 6, whereas the CatBoost 
model is trained with 500 iterations and a depth of 6. Because 
both models use structured tabular data, which enables tree-
based learners to effectively capture numerical patterns and 
feature interactions without the need for temporal sequence 
modeling, they outperform the CNN–BiLSTM model and 
reach 100% classification accuracy. Despite not having 
waveform-level temporal learning, these models are useful 
supplemental classifiers in the suggested framework because to 
their excellent performance and capacity to produce 
explainable feature importance ratings. 
 
3.5 Explainability Using SHAP 
 
 Using the TreeExplainer approach, SHAP (SHapley Additive 
exPlanations) analysis is done to the CatBoost and XGBoost 
models to guarantee that the suggested anomaly detection 
framework is clinically interpretable. Given that gradient 
boosting models use structured input features, SHAP rates each 
feature according to how much it contributes to the final 
classification. To graphically demonstrate which physiological 
characteristics—derived from breathing, PPG, or ECG—have 
the most impact on spotting aberrant patterns, global SHAP 
summary charts are produced. Instead of depending on a black-
box forecast, this explainability phase enables physicians to 
comprehend why the model classifies a segment as abnormal, 
which is crucial in a medical setting. SHAP enhances model 
transparency, promotes confidence in AI-driven diagnosis, and 
satisfies new regulatory standards for explainable medical 
artificial intelligence by disclosing the reasoning behind the 
choice. 
3.6 Physiological Parameter Extraction 
 Heart Rate (HR) and Respiratory Rate (RR), two clinically 
significant measures, are taken out of the multimodal dataset to 
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confirm that the anomaly labels correlate to significant 
physiological changes. RR is obtained from respiration 
waveform peaks using the scipy.find_peaks() method, whereas 
HR is calculated using ECG peaks. Each signal segment's 
values are computed, and they are subsequently categorized 
based on the class label (normal or aberrant). Below is a 
comparison: 
Table -1: Physiological Parameter 
 

Physiological 
Parameter 

Normal 
Segments 

Abnormal 
Segments 

Heart Rate 
(BPM) 

71.74 ± 6.39 67.88 ± 3.50 

Respiratory 
Rate 
(Breaths/min) 

44.18 ± 5.31 4.50 ± 11.91 

 
 
The respiratory rate reduces sharply from normal breathing 
levels (~44 breaths/min) to severely suppressed values (~4 
breaths/min), although the heart rate shows a slight fall in 
aberrant parts. The accuracy of the variance-based labeling 
approach employed in dataset preprocessing is clearly 
supported by this notable drop. Additionally, since decreased 
respiration variability is frequently linked to cardiorespiratory 
discomfort, apnea, and other aberrant physiological events, it 
validates the model's therapeutic significance. 
 
3.7 Data Flow Design 
 
Figure 1 delineates the methods for identifying aberrant 
respiratory conditions through physiological cues. The 
procedure commences with the acquisition of data from two 
separate public databases: the MIT-BIH ECG Dataset and the 
BIDMC PPG & Resp Dataset. The raw signals are then 
subjected to data preprocessing to cleanse and normalize the 
time series. The independent signals undergo Data 
Synchronization to align the respective ECG, PPG, and 
Respiration segments, resulting in a cohesive, multi-channel 
input.  
 

 

Fig -1 Block Diagram of Proposed methodology 
 
The produced dataset is subsequently divided into training and 
testing sets with a Train-Test Split. The analysis centers on two 
distinct modeling methodologies: a deep learning approach 
employing a CNN-BiLSTM model, which integrates Conv1D 
and LSTM layers for automated feature extraction, and a 
feature-based approach where time-series data undergoes 
Feature Flattening and StandardScaler normalization prior to 
being input into robust ensemble classifiers, specifically 
XGBoost and CatBoost classifiers. Ultimately, all models 
undergo comprehensive Model Evaluation and Reporting, 
during which performance indicators such as Accuracy, Loss, 
and Confusion Matrix are produced. The SHAP Explainability 
Module is utilized to promote transparency and reliability in 
feature-based models by elucidating feature importance. 
 

4. DESIGN AND IMPLEMENTATION 
 
4.1 Dataset Collection 
 
The MIT-BIH Arrhythmia Database for ECG signals and the 
BIDMC PPG and Respiration Database for PPG and 
respiratory signals are the two publicly accessible benchmark 
datasets used in this project. Installing and configuring the 
WFDB Python library is the first step in programmatically 
accessing PhysioNet records. The MIT-BIH database (mitdb) 
is then downloaded using wfdb.dl_database(), and the record 
names are obtained by listing all header files (.hea). The first 
ten records are chosen from them, and wfdb.rdrecord() is used 
to read the relevant signal for each record. It extracts and stores 
the major ECG channel, which is usually the first column of the 
p_signal. Likewise, the first ten individuals are handled after 
downloading the BIDMC database (bidmc). Both the 
respiration (channel 1) and PPG (channel 0) signals are read for 
every chosen BIDMC record. The ECG (from MIT-BIH), PPG, 
and respiration (from BIDMC) are the three synchronized 
physiological streams that are produced as a result, prepared for 
further segmentation and labeling. 
 
4.2 Data Preprocessing 
 
To turn raw signals into a multimodal dataset fit for deep 
learning, data preparation is done in a number of structured 
phases. Step 1: Normalization: To guarantee zero-mean, unit-
variance inputs, the means of each ECG, PPG, and respiration 
signal are subtracted, and the results are then divided by the 
standard deviation. Step 2: Windowing Each continuous 
recording is slid over using a set window size of 10 seconds 
(window_size = 125 * 10) and a 5-second stride (stride = 125 * 
5). An equal-length ECG, PPG, and breathing segment (1250 
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samples) are retrieved for each window location. Step 3: 
Labeling The respiration segment variance is computed for 
each window; if the variance is less than a certain threshold 
(e.g., < 0.05), the window is classified as abnormal (1); if not, 
it is classified as normal (0). Step 4: Synchronization and 
Stacking: All three modalities are shortened to the smallest 
common length because the amount of ECG and 
PPG/respiration segments may vary. The matching label array 
y is then produced by stacking the matched ECG, PPG, and 
respiration segments along the channel dimension to build a 3-
D tensor X of shape (num_samples, 1250, 3). Train-Test Split 
and Class Balancing Step 5: Train_test_split() is used to split 
the dataset into training and testing sets. Stratification on labels 
is used to maintain the class ratio, and 
class_weight.compute_class_weight() is used to balance out 
the imbalance between normal and abnormal samples. The 
CNN–BiLSTM and gradient boosting models can then be 
trained using the cleaned, normalized, windowed, and labeled 
data. 
 
4.3 Model Training, Validation, and Evaluation 
 
20% of the training data is set aside for validation in order to 
track generalization performance during training, and the 
suggested CNN–BiLSTM model is trained using a supervised 
learning approach over 20 epochs with a batch size of 32. In 
order to avoid overfitting, an EarlyStopping method is used, 
which immediately ends training when the validation loss stops 
improving and has a patience value of five epochs. Accuracy 
and loss curves are recorded by the system during the training 
process and are subsequently displayed to evaluate 
performance consistency between the training and validation 
stages. Following training, the model is assessed using test data 
that has not yet been seen. It has a strong capacity to detect 
abnormalities, achieving a high classification accuracy of 
98.95%. To visually compare predicted against actual labels, a 
confusion matrix is presented using a Seaborn heatmap, and 
performance assessment metrics such as precision, recall, and 
F1-score are provided using classification_report. Together 
with the Area Under the Curve (AUC), a ROC curve is also 
calculated, demonstrating that even when there is a class 
imbalance, the model continues to discriminate between 
normal and abnormal physiological segments with high 
accuracy. 
 
4.4 Libraries and Frameworks used 
  
Table 4.1 presents various software libraries for data 
processing, model training, and result visualization. WFDB is 
utilized for the acquisition of ECG, PPG, and breathing signals. 
NumPy facilitates numerical computations, while 

TensorFlow/Keras is employed to construct the CNN-BiLSTM 
model. Scikit-Learn facilitates data partitioning and 
assessment, whilst CatBoost and XGBoost assist in evaluating 
machine learning efficacy. Matplotlib and Seaborn generate 
visualizations, whereas SHAP elucidates model decisions. 
SciPy identifies peaks for the computation of cardiac and 
respiratory rates. Collectively, these instruments facilitate 
effective data processing, model training, and outcome 
analysis. 
Table 4.1 Library / Framework 
 

S.No Library / 
Framework 

Purpose in Project 

1 WFDB 
(WaveForm 
Database) 

Download and read PhysioNet ECG, 
PPG, and Respiration datasets 

2 NumPy Numerical computation, signal 
window segmentation, variance 
calculation 

3 TensorFlow 
/ Keras 

Building, training, and evaluating the 
CNN-BiLSTM deep learning model 

4 Scikit-Learn Train-test splitting, class balancing, 
evaluation metrics 

5 CatBoost Gradient boosting classification, 
feature importance, SHAP 
computation 

6 XGBoost Ensemble-based anomaly detection 
baseline and performance 
comparison 

7 Matplotlib Plotting of ECG/PPG signals, 
confusion matrix, ROC curves 

8 Seaborn 
(optional) 

Heatmap visualization for confusion 
matrix 

9 SHAP Model interpretability and feature 
impact visualization 

10 SciPy Peak detection for computing heart 
rate and respiration rate 

11 WFDB-DL 
API 

Automated dataset download from 
PhysioNet 

 
4.5 Software and Hardware Platform 
 
The project was built utilizing Python in settings such as 
Jupyter Notebook or Google Colab. Libraries including 
TensorFlow, NumPy, and CatBoost were utilized for deep 
learning, data processing, and model assessment. A PC 
equipped with an Intel i5 or i7 processor and a minimum of 8 
GB RAM is adequate to execute the program. A GPU is not 
essential but facilitates expedited model training. A minimum 
of 10 GB of storage is necessary for datasets and output files. 
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Table 4.2 Softwares and Hardwares used 

1 Operating System Windows 10/11 or 
Ubuntu 

2 Programming 
Language 

Python 3.8 or above 

3 Development Tool Jupyter Notebook / 
Google Colab / VS Code 

4 Libraries Used TensorFlow, NumPy, 
SciPy, Matplotlib, 
CatBoost, XGBoost, 
WFDB 

5 Processor Intel Core i5/i7 or 
equivalent 

6 RAM Minimum 8 GB 
(Recommended 16 GB) 

7 GPU (Optional) NVIDIA GPU for faster 
model training 

8 Storage At least 10 GB free space 

 
 
5 RESULTS AND DISCUSSION 
 
This chapter delineates the performance assessment of the 
proposed multimodal patient monitoring system. The hybrid 
CNN-BiLSTM model was trained with synchronized ECG, 
PPG, and breathing signals, and its classification performance 
was evaluated using multiple standard measures. Comparative 
studies were conducted utilizing CatBoost and XGBoost 
models to validate the efficacy of the retrieved features. 
Performance metrics including accuracy, precision, recall, F1-
score, confusion matrix, and ROC curve are evaluated to 
determine system reliability. Furthermore, estimations of heart 
rate and breathing rate are provided to confirm physiological 
significance. The findings are analyzed for model performance, 
advantages, constraints, and consistency with prior research. 
 
5.1 Experimental Setup 
  
All tests in this project utilized publicly accessible ECG, PPG, 
and respiration signals from the MIT-BIH Arrhythmia 
Database and the BIDMC PPG and Respiration Database. The 
signals were initially downloaded via the WFDB library and 
subsequently analyzed in Python utilizing Jupyter 
Notebook/Google Colab. Each signal was standardized and 
partitioned into set 10-second intervals with a 5-second overlap 
to generate input segments. The segments were subsequently 
amalgamated into a three-channel input (ECG, PPG, 
Respiration) and utilized to train the hybrid CNN-BiLSTM 
model in TensorFlow/Keras. The dataset was divided into 
training and testing sets in an 80:20 ratio, and class weights 
were utilized to address label imbalance. Gradient boosting 

models, including CatBoost and XGBoost, were trained on 
flattened signal characteristics for comparative analysis. The 
model's performance was assessed by accuracy, precision, 
recall, F1-score, confusion matrix, and ROC–AUC, with 
results shown via Matplotlib and Seaborn. 
 
5.2 Training and Validation Performance 
 
Plots of the CNN–BiLSTM model's learning over training 
epochs are displayed. Effective feature learning from ECG, 
PPG, and breathing signals is demonstrated by the accuracy, 
which rises quickly for both training and validation data and 
surpasses 98% by epoch 3. Validation accuracy declines after 
epoch 4, indicating overfitting. This is corroborated by the loss 
curves, which demonstrate good generalization as validation 
loss drops off significantly in the early epochs and stays below 
training loss until epoch 4. Nevertheless, after epoch 5, an 
increase in validation loss suggests that performance might 
deteriorate with additional training. All things considered, the 
curves support rapid convergence and support early stopping as 
a means of preserving accuracy even when there is a class 
imbalance, between physiological segments that are normal 
and those that are disordered. 

  
 
     Fig-2 Training accuracy and validation accuracy 
 
The graph demonstrates quick learning in the initial epochs, 
and by epoch 2, both training and validation accuracy are close 
to 100%, suggesting successful feature extraction. Up until 
epoch 4, accuracy is constant; after that, early overfitting is 
evident as validation accuracy declines but training accuracy 
remains high. This demonstrates that halting training early 
guarantees higher generalization and that the model performs 
at its best during the first few epochs. 
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Fig.5.2: Accuracy vs Epochs 
  

 
Fig -3 Confusion Matrix 

 
The algorithm successfully identified 185 normal samples and 
all three abnormal samples, according to the confusion matrix; 
just two normal cases were incorrectly identified as abnormal. 
Every anomalous occurrence was found, hence there are no 
false negatives. This shows excellent sensitivity for detecting 
abnormalities and great dependability. 
5.3Evaluation Metrics 
  

 
Fig -4 ROC Curve 

 
With an AUC of 1.00, the model performs almost flawlessly, 
according to the ROC curve. When the curve reaches the upper-
left corner, it shows nearly zero false positives and a very high 
true positive detection rate. Excellent differentiation between 
normal and pathological samples is confirmed by this. 
 
  

               

 
 Fig -5 Sample window of ECG,PPG and Resp signals 
 
An example normal segment with synchronized ECG, PPG, 
and breathing signals is displayed in this plot. The respiration 
waveform features regular rhythmic oscillations, the PPG 
signal exhibits smooth pulsatile patterns in sync with 
heartbeats, and the ECG waveform reveals distinct periodic R-
peaks. A normal physiological state is confirmed by the 
regularity of all three signals. 
  

 
              Fig -6  Heart and Respiration rate Distribution 
 
According to the heart rate histogram, aberrant samples look 
slightly lower than normal samples, which typically range 
between 65 and 85 BPM. The two classes are easily 
distinguished by the respiratory rate distribution: aberrant 
samples have abnormally low breathing rates close to zero, 
whereas normal signals cluster around 40–55 breaths/min. This 
demonstrates that a powerful sign of abnormalities is 
respiratory suppression. 
  

 
                                  Fig -7  Accuracy and Loss  
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Strong learning power is demonstrated by the charts, which 
show that both training and validation accuracy rapidly surpass 
95% and approach 100% after a few epochs. The accuracy 
curves exhibit steady generalization and converge smoothly 
despite minor changes. The lack of significant overfitting is 
confirmed by the loss curves' constant decline for both training 
and validation, with validation loss coming in close after 
training loss. The model has effectively reduced classification 
error while preserving consistent performance across training 
and validation data, as evidenced by the loss  approaching zero 
by the last epochs. 
 
5.4 Comparative Analysis 
 
The performance assessment indicates that the suggested 
multimodal system attains exceptional accuracy in classifying 
respiratory abnormalities through the utilization of both deep 
learning and machine learning models. The hybrid CNN-
BiLSTM model attained an overall test accuracy of 98.94%, 
with precision, recall, and F1-score of 0.99 for the detection of 
the normal class. Despite the abnormal class having less data, 
the model attained a recall of 0.67, demonstrating its 
proficiency in identifying aberrant breathing patterns amongst 
class imbalance. XGBoost and CatBoost were trained on the 
identical dataset to confirm the retrieved features, achieving 
100% accuracy across all measures, hence exhibiting flawless 
classification performance for both normal and atypical 
instances. The weighted averages for all metrics approached 
1.0, indicating robust generalization capability. The results 
underscore the efficacy of integrating multimodal signal fusion 
with deep learning and boosting methodologies for dependable 
abnormality identification. 
 
CNN-BiLSTM Test Accuracy: 0.9894736842105263 
              precision    recall  f1-score   support 
 
           0       0.99      0.99      0.99       187 
           1       0.67      0.67      0.67         3 
 
    accuracy                           0.99       190 
   macro avg       0.83      0.83      0.83       190 
weighted avg       0.99      0.99      0.99       190 
 
XGBoost Accuracy: 1.0 
              precision    recall  f1-score   support 
 
           0       1.00      1.00      1.00       187 
           1       1.00      1.00      1.00         3 
 
    accuracy                           1.00       190 
   macro avg       1.00      1.00      1.00       190 

weighted avg       1.00      1.00      1.00       190 
 
CatBoost Accuracy: 1.0 
              precision    recall  f1-score   support 
 
           0       1.00      1.00      1.00       187 
           1       1.00      1.00      1.00         3 
 
    accuracy                           1.00       190 
   macro avg       1.00      1.00      1.00       190 
weighted avg       1.00      1.00      1.00       190 
 
 

3. CONCLUSIONS 
 
With a CNN–BiLSTM architecture and gradient boosting 
models, the suggested multimodal framework effectively 
combines ECG, PPG, and respiration signals, reaching over 
98% accuracy for anomaly identification while preserving 
clinical interpretability through SHAP analysis. The models 
and labelling strategy's dependability is demonstrated by 
physiological validation, which verifies that aberrant segments 
have decreased respiratory activity.  
Expanding signal modalities, employing annotations that have 
been medically verified, implementing the system on wearable 
or edge devices in real-time, and embracing sophisticated 
models like Transformers with enhanced explainability are the 
main goals of future study. These improvements will facilitate 
ongoing remote health monitoring and real-world clinical 
deployment. 
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