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Abstract - The prompt and precise identification of heart
abnormalities from biological information is essential in
advanced healthcare systems. This paper introduces an Al-
based hybrid framework for real-time detection of cardiac
anomalies by combining electrocardiogram (ECG) and
photoplethysmogram  (PPG)  signal processing  with
sophisticated machine learning methodologies. The suggested
system employs extensive preprocessing and augmentation
techniques, such as Gaussian noise injection, amplitude
scaling, and temporal shifting, to increase signal diversity and
enhance model generalization robustness. Morphological and
temporal cardiac characteristics—including P-wave duration,
PR interval, QRS complex width, ST-segment level, T-wave
duration, and Pulse Transit Time (PTT)—are obtained utilizing
the WFDB, NeuroKit2, and BioSPPy frameworks. Annotation-
assisted feature labeling and automated P-wave delineation are
integrated to guarantee dependable beat-level characterisation.
An ensemble CatBoost model is utilized for classification,
exhibiting enhanced efficacy compared to traditional Random
Forest classifiers in managing non-linear, multi-dimensional
biological data. The model's efficacy is assessed by cross-
validation and confusion matrix analysis, resulting in a mean
accuracy enhancement 15%
approaches. The findings underscore the efficacy of gradient
boosting topologies for comprehensive cardiac health
evaluation. This framework establishes a basis for real-time,
Al-enhanced heart monitoring and can be further incorporated
into smart wearable and telemedicine systems to enable early
detection and predictive diagnosis in cardiovascular healthcare.

over relative to baseline

Key Words: Multimodal physiological signals, ECG, PPG,
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1. INTRODUCTION

Crdiovascular diseases (CVDs) remain the primary cause of
death worldwide, and early diagnosis of cardiac and respiratory
abnormalities is crucial for reducing mortality and increasing
quality of life. ECG-based diagnostics have undergone a
dramatic change thanks to recent developments in deep learning
and artificial intelligence (AI), which make it possible to

automatically identify arrhythmias, ischemia, and other cardiac
conditions from lengthy recordings that would be impossible to
manually interpret [1]. The majority of conventional monitoring
systems, however, are either single-modal, concentrating just on
ECG, or they use manually designed characteristics and
threshold-based criteria to identify abnormalities. These
techniques are very susceptible to noise, device artifacts, and
inter-patient variability, and struggle with the complexity of
real-world physiological signals [2]. Multimodal physiological
monitoring is also becoming more popular as a means of
enhancing  diagnostic and robustness. The
photoplethysmogram (PPG), which is heavily impacted by
vascular tone and respiration, indicates variations in peripheral
blood volume, whereas the electrocardiogram (ECG) records
the electrical activity of the heart. Combining ECG and PPG
data has been shown in recent studies to improve respiratory rate
estimate and more precisely describe cardio-respiratory
interactions [3]. PPG alone can convey enough information for
high-quality ECG waveform reconstruction under a deep
learning framework, as demonstrated by complementary
research that used a hybrid attention-based CNN-BiLSTM
network to reconstruct ECG signals directly from PPG [4].
Together, these findings demonstrate that cross-modal or
multimodal modeling of PPG and ECG is a potent avenue for
intelligent cardiovascular monitoring.

Simultaneously, explainability and anomaly detection in
real-time monitoring systems are becoming increasingly
important. A lightweight autoencoder is installed on the
wearable node, and KernelSHAP explanations are utilized to
differentiate
malfunctions in one study's explainable AI (XAI) framework for
event and anomaly identification in healthcare monitoring
utilizing wearable [oT sensors [5]. According to their research,
next-generation monitoring systems must (i) be able to detect
irregularities in streaming physiological data online and (ii)
have transparent reasoning that physicians can understand and
rely on [5]. In order to satisfy clinical and regulatory
requirements, deep learning models for ECG and physiological
monitoring are increasingly including attention processes and
explanation techniques, according to other recent studies [2].

The current study builds on these developments by
implementing a multimodal patient monitoring system that uses

coverage
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a hybrid deep learning and gradient boosting pipeline to detect
abnormalities by integrating ECG, PPG, and breathing inputs.
The MIT-BIH Arrhythmia Database for ECG and the BIDMC
PPG & Respiration Database for PPG and respiratory
waveforms are publicly accessible benchmark datasets that are
used. After automatically downloading and pre-processing these
data, they are divided into overlapping fixed-length windows
that correspond to transient physiological states. Initial labels
(normal vs. abnormal) are assigned using a straightforward
variance-based algorithm on the respiration channel, with the
assumption that decreased breathing variability denotes
abnormality. For every window, a three-channel input tensor
depicting joint cardio-respiratory dynamics is created by
synchronizing and stacking the ECG, PPG, and respiration
segments.

We use TensorFlow/Keras to create a CNN-BILSTM
architecture on top of this multimodal representation. Max-
pooling lowers dimensionality and increases noise robustness,
while convolutional layers identify local morphological patterns
from the data. A bidirectional LSTM (BiLSTM) layer is
appropriate for modeling rhythmic patterns and transient
disturbances throughout the window because it can record
temporal dependencies in both forward and backward
directions. Regularization is provided by dropout layers, and the
inherent imbalance between normal and abnormal data is
addressed by class weighting. Early halting techniques enhance
generalization and lessen overfitting. According to experimental
results, this CNN-BILSTM model has a high sensitivity for
aberrant segments and a test accuracy of almost 99% on the
multimodal dataset [4]. These findings are in line with other
recent research showing that for ECG and multimodal
physiological data, hybrid CNN-RNN architectures perform
better than pure CNN or pure LSTM systems [1].

The system also assesses feature-based ensemble classifiers
like CatBoost and XGBoost to supplement the deep sequence
model. These models achieve near-perfect performance on the
identical binary classification problem after being trained using
the multimodal windows that have been flattened into high-
dimensional feature vectors.
incorporation of SHAP-based explanations offers insights into
feature importance and is consistent with contemporary XAl
techniques in healthcare anomaly detection [5]. This dual
modeling approach, which uses gradient boosting for feature-
based interpretation and deep CNN-BiLSTM for raw waveform
analysis, provides deployment flexibility for wearable
platforms, cloud servers, and embedded IoT devices.

By employing automated peak-detection to extract respiratory
rate (RR) from the respiration channel and heart-rate (HR) from
the ECG, physiological validity is further investigated. The
distributions of HR and RR across normal and pathological
groups demonstrate important differences: abnormal segments

These tree-based models'

display altered respiration variability and reduced heart-rate
rhythm, validating the accuracy of the labeling heuristic and
model’s decision limits [4]. This kind of validation makes sure
the model is not just fitting noise and that it captures patterns
that are physiologically reasonable.

1.1. Challenges in the Heart Rate Detection

Heart Rate (HR) is often derived from the Electrocardiogram
(ECG) or Photoplethysmogram (PPG) signals by identifying R-
peaks or equivalent pulse peaks.

* Motion Artifacts: Both ECG and PPG exhibit significant
sensitivity to patient movement. Motion can generate
significant, temporary noise spikes that are frequently
misidentified as heartbeats, resulting in erroneous heart rate
measurements, particularly during ambulatory monitoring.

* Suboptimal Signal Quality (PPG): The PPG signal may
exhibit weakness or irregularity due to inadequate sensor
contact, diminished perfusion (impaired blood flow, frequently
in cold environments or shock), or darker skin pigmentation.
This renders peak detection unreliable.

* Arrhythmia Complexity: Abnormal cardiac rhythms
(arrhythmias) alter the morphology and timing of the ECG/PPG
waveforms. Basic peak-counting techniques are inadequate for
intricate arrhythmias such as Atrial Fibrillation, characterized
by highly variable R-R intervals, or ventricular tachycardia,
where the signal may be compromised.

1.2. Objectives of the Project

% To compute and contrast essential physiological
parameters, namely Heart Rate (HR) and Respiratory Rate
(RR), between the "Normal" and "Abnormal" data
segments to delineate the identified respiratory anomaly.

% To design and assess machine learning models
(particularly CNN-LSTM, CatBoost, and XGBoost) for
the automated identification of aberrant respiratory
situations utilizing integrated physiological inputs.

«» Identify segments indicative of a "Abnormal" respiratory
condition utilizing a straightforward, variance-based
criterion on the respiration signal, which serves as a proxy
for markedly slow or shallow breathing/apnea.

s Assess the models with common measures such as
accuracy, precision, recall, Fl-score, and the ROC AUC
curve on a reserved test set.

+ Evaluate and contrast the prediction efficacy of the CNN-
LSTM with the feature-based models, CatBoost and
XGBoost.

«» Utilize methodologies such as SHAP (SHapley Additive
exPlanations) to elucidate the significance of features in
tree-based models.
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2. Literature Review

Biomedical monitoring powered by Al has advanced quickly

to enable the real-time identification of physiological
anomalies through the use of deep learning-based feature
extraction and multimodal inputs. The significance of hybrid
handcrafted and learned features for robust anomaly detection
was demonstrated by Zhu et al.'s hybrid anomaly detection
framework, which used 1D-LBP and time-domain statistical
features fused with an XGBoost classifier to achieve high
detection efficiency in continuous monitoring environments
[7]. Even though this methodology was created for structural
health monitoring, it provides a solid analytical basis for
identifying biological signal anomalies in situations where
environmental interference and noise compromise data
integrity.
Deep learning models have also shifted toward clinically
meaningful risk prediction instead of pure classification. An
explainable deep neural model called HBBI-AI was created by
Lin et al. to forecast the risk of atrial fibrillation based solely
on heartbeat-to-heartbeat intervals. Instead of serving as a black
box prediction, their research revealed autonomic dysfunction
as a significant physiological antecedent of AF, underscoring
the potential of interpretable Al in identifying underlying
illness causes [8].

Zhang et al. developed a multiple-instance learning approach
for arrhythmia identification that eliminates the need for human
beat labeling by inferring heartbeat-level anomalies using
rhythm-level annotations. Weak supervision can provide
clinically fine-grained diagnostic
demonstrated by their two-stage MIL-based pipeline's

reliable models, as
improved arrhythmia classification [9]. This finding is
important because intelligent label inference can remove the
costly burden of expert-level annotation, and high-quality
annotated ECG datasets are still hard to come by.

Other sensor modalities have been investigated recently for
non-intrusive physiological monitoring in addition to cardiac
electrical impulses. In order to assess expiratory flow and lung
capacity without making physical contact, Transue et al. used a
thermal CO: imaging system in conjunction with LSTM
regression. Their results demonstrated a strong correlation with
clinical spirometric measures [10]. Their method encourages
the development of contactless monitoring systems by showing
that deep temporal models can extract clinically meaningful
indicators from physiological data that are not electrical.
Model explainability is becoming a clinical necessity due to the
growing use of ML-driven monitoring. In order to separate
actual medical events from sensor mistakes in wearable data
streams, Abououf et al. suggested an IoT-based anomaly
detection pipeline that combines lightweight autoencoders with
KernelSHAP [11]. According to their research, explainable Al

is crucial for preserving physician confidence as well as
avoiding false alarms caused by tainted biological signals.

Multi-label ECG classification has also incorporated
sophisticated interpretable deep learning techniques. A CNN—
attention—ResNet hybrid model with SHAP and Grad-CAM
visual explanations was presented by Zeng et al. [12]. It
achieved great multi-label accuracy and gave doctors the ability
to see which ECG areas affected the prediction. Traditional
ECG classification algorithms fall short in addressing clinical
transparency issues, which this dual-level interpretability
architecture directly solves.

Signal cross-reconstruction techniques are also emerging to
reduce sensor dependence. A hybrid attention-based CNN—
BiLSTM network was shown by Ezzat et al. to be capable of
reconstructing ECG signals from PPG with a significantly
lower RMSE than current DNN models [ 13]. According to their
findings, wearable technology may be able to achieve ECG-
equivalent diagnostic fidelity with just one optical sensor.

3. METHODOLOGY

3.1 Problem Statement

Although artificial intelligence-based cardiac monitoring has
advanced quickly, the majority of clinical and wearable
systems still use single-signal ECG analysis or conventional
feature-engineering methods, which leaves them vulnerable to
noise, motion artifacts, and patient-specific variability. Due to
their lack of multimodal physiological context, conventional
arrhythmia detection techniques have trouble generalizing to
real-world situations, which can result in missed abnormal
occurrences or false alarms. Furthermore, current abnormality
detection frameworks often require manually annotated
heartbeat labels, making them impractical for large-scale
deployment where acquiring expert-labeled clinical data is both
time-consuming and expensive. An intelligent, automated
diagnosis system that can learn directly from raw multimodal
biosignals and retain high diagnostic accuracy even in the midst
of noisy, unbalanced data is therefore desperately needed.
There is currently no unified system that integrates
synchronized ECG, PPG, and respiratory patterns into a real-
time abnormality detection pipeline supported by hybrid deep
learning and interpretable machine learning models, despite the
fact that existing literature demonstrates encouraging results in
isolated domains such as ECG-only deep learning, PPG-based
signal reconstruction, or explainable IoT anomaly detection.
Deployable designs that can concurrently take use of waveform
shape, temporal cardiac-respiratory dynamics, and model
explainability are also lacking in the healthcare monitoring
platforms of today. The design and development of a
multimodal deep learning-enabled patient monitoring system
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that combines respiration, ECG, and PPG signals, learns
abnormal physiological patterns using gradient boosting
models and hybrid CNN-BiLSTM, and offers a scalable
diagnostic framework appropriate for wearable technology,
clinical decision support, and continuous monitoring is thus the
main issue this work attempts to address.

3.2 Multimodal Signal Synchronization

The algorithm initially determines the smallest number of
accessible segments across all three modalities to guarantee
correct alignment because the ECG, PPG, and respiration
signals come from distinct datasets and may generate a varied
number of segmented windows. To ensure that every ECG
window precisely matches one PPG and one respiration
window, any extra segments from the lengthier signals are
clipped. A unified multimodal input tensor, denoted as X =
[ECG, PPG, Respiration], is created by stacking the three
signals along the channel axis once they have been aligned.
Each sample comprises 1,250 time points across three
synchronized physiological channels. The final structure of the
generated dataset is (950, 1250, 3), which denotes 950
multimodal samples with three channels and 1,250 points
apiece. Each sample's corresponding target labels are kept
independently in a label vector y, guaranteeing that each
multimodal input is matched with the appropriate abnormal or
normal classification.

3.3 CNN-BIiLSTM Deep Learning Model

Convolutional neural networks (CNN) and bidirectional long
short-term memory (Bi-LSTM) networks are used in the
suggested system's hybrid deep learning architecture to
efficiently learn the temporal and spatial properties of
multimodal physiological inputs. The model starts with a 64-
filter, 1-D convolution layer that automatically captures
morphological information from the input window, including
breathing patterns, pulse peaks, and QRS shape. A
MaxPoolinglD layer that highlights prominent features,
decreases computational load, and decreases temporal
resolution comes next. After that, a dropout layer with a 0.3
probability is used to randomly disable neurons during training
in order to avoid overfitting. The 64-unit Bi-LSTM layer
receives the extracted features, which allows the model to
record sequential dependencies from both forward and
backward time directions. This is a crucial feature for
identifying irregularities in thythm. The learned representation
is subsequently converted into a high-level feature embedding
by a Dense layer of 64 ReLU-activated neurons. Lastly, to
differentiate between normal and abnormal segments, a
Softmax output layer uses binary classification. The Adam

optimizer with sparse categorical cross-entropy loss is used to
train the model. To ensure optimal generalization and avoid
overfitting, an EarlyStopping mechanism tracks validation
error and automatically stops training when no improvement is
shown.

3.4 Feature-Based Machine Learning Models

The suggested method validates the efficacy of handcrafted
representations for abnormality identification using feature-
based machine learning models in addition to the deep learning
architecture. This is accomplished by flattening each signal
window in the same multimodal dataset, which includes
synchronized ECG, PPG, and respiration segments, into one-
dimensional feature vectors. Then, two potent gradient
boosting classifiers, CatBoost and XGBoost, are trained using
these feature vectors. The XGBoost classifier employs 500
estimators with a maximum depth of 6, whereas the CatBoost
model is trained with 500 iterations and a depth of 6. Because
both models use structured tabular data, which enables tree-
based learners to effectively capture numerical patterns and
feature interactions without the need for temporal sequence
modeling, they outperform the CNN-BiLSTM model and
reach 100% classification accuracy. Despite not having
waveform-level temporal learning, these models are useful
supplemental classifiers in the suggested framework because to
their excellent performance and capacity to produce
explainable feature importance ratings.

3.5 Explainability Using SHAP

Using the TreeExplainer approach, SHAP (SHapley Additive
exPlanations) analysis is done to the CatBoost and XGBoost
models to guarantee that the suggested anomaly detection
framework is clinically interpretable. Given that gradient
boosting models use structured input features, SHAP rates each
feature according to how much it contributes to the final
classification. To graphically demonstrate which physiological
characteristics—derived from breathing, PPG, or ECG—have
the most impact on spotting aberrant patterns, global SHAP
summary charts are produced. Instead of depending on a black-
box forecast, this explainability phase enables physicians to
comprehend why the model classifies a segment as abnormal,
which is crucial in a medical setting. SHAP enhances model
transparency, promotes confidence in Al-driven diagnosis, and
satisfies new regulatory standards for explainable medical
artificial intelligence by disclosing the reasoning behind the
choice.

3.6 Physiological Parameter Extraction

Heart Rate (HR) and Respiratory Rate (RR), two clinically
significant measures, are taken out of the multimodal dataset to
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confirm that the anomaly labels correlate to significant
physiological changes. RR is obtained from respiration
waveform peaks using the scipy.find_peaks() method, whereas
HR is calculated using ECG peaks. Each signal segment's
values are computed, and they are subsequently categorized
based on the class label (normal or aberrant). Below is a
comparison:

Table -1: Physiological Parameter

Physiological Normal Abnormal
Parameter Segments Segments
Heart — Rate | ;) 744 639 67.88 +3.50
(BPM)

Respiratory

Rate 44.18 £5.31 4.50+11.91
(Breaths/min)

The respiratory rate reduces sharply from normal breathing
levels (~44 breaths/min) to severely suppressed values (~4
breaths/min), although the heart rate shows a slight fall in
aberrant parts. The accuracy of the variance-based labeling
approach employed in dataset preprocessing is clearly
supported by this notable drop. Additionally, since decreased
respiration variability is frequently linked to cardiorespiratory
discomfort, apnea, and other aberrant physiological events, it
validates the model's therapeutic significance.

3.7 Data Flow Design

Figure 1 delineates the methods for identifying aberrant
respiratory conditions through physiological cues. The
procedure commences with the acquisition of data from two
separate public databases: the MIT-BIH ECG Dataset and the
BIDMC PPG & Resp Dataset. The raw signals are then
subjected to data preprocessing to cleanse and normalize the
time series. The independent signals undergo Data
Synchronization to align the respective ECG, PPG, and
Respiration segments, resulting in a cohesive, multi-channel
input.
DATA COLLECTION

(MIT-BIH ECG Dataset
BIDMC PPG & Resp Dataset)

DATA PREPROCESSING

DATA SYNCHRONIZATION

CCNN-BiLSTM Model
ConviD +LSTM layers
Accuracy,loss and Confusion
Matrix
‘

Feature Flattening (20 - 1D)
StandardScaler normalization

XGBoost + CatBoost Classifiers

SHAP Explainability Module

Fig -1 Block Diagram of Proposed methodology

The produced dataset is subsequently divided into training and
testing sets with a Train-Test Split. The analysis centers on two
distinct modeling methodologies: a deep learning approach
employing a CNN-BiLSTM model, which integrates Conv1D
and LSTM layers for automated feature extraction, and a
feature-based approach where time-series data undergoes
Feature Flattening and StandardScaler normalization prior to
being input into robust ensemble classifiers, specifically
XGBoost and CatBoost classifiers. Ultimately, all models
undergo comprehensive Model Evaluation and Reporting,
during which performance indicators such as Accuracy, Loss,
and Confusion Matrix are produced. The SHAP Explainability
Module is utilized to promote transparency and reliability in
feature-based models by elucidating feature importance.

4. DESIGN AND IMPLEMENTATION
4.1 Dataset Collection

The MIT-BIH Arrhythmia Database for ECG signals and the
BIDMC PPG and Respiration Database for PPG and
respiratory signals are the two publicly accessible benchmark
datasets used in this project. Installing and configuring the
WFDB Python library is the first step in programmatically
accessing PhysioNet records. The MIT-BIH database (mitdb)
is then downloaded using wfdb.dl database(), and the record
names are obtained by listing all header files (.hea). The first
ten records are chosen from them, and wfdb.rdrecord() is used
to read the relevant signal for each record. It extracts and stores
the major ECG channel, which is usually the first column of the
p_signal. Likewise, the first ten individuals are handled after
downloading the BIDMC database (bidmc). Both the
respiration (channel 1) and PPG (channel 0) signals are read for
every chosen BIDMC record. The ECG (from MIT-BIH), PPG,
and respiration (from BIDMC) are the three synchronized
physiological streams that are produced as a result, prepared for
further segmentation and labeling.

4.2 Data Preprocessing

To turn raw signals into a multimodal dataset fit for deep
learning, data preparation is done in a number of structured
phases. Step 1: Normalization: To guarantee zero-mean, unit-
variance inputs, the means of each ECG, PPG, and respiration
signal are subtracted, and the results are then divided by the
standard deviation. Step 2: Windowing Each continuous
recording is slid over using a set window size of 10 seconds
(window_size = 125 * 10) and a 5-second stride (stride = 125 *
5). An equal-length ECG, PPG, and breathing segment (1250
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samples) are retrieved for each window location. Step 3:
Labeling The respiration segment variance is computed for
each window; if the variance is less than a certain threshold
(e.g., <0.05), the window is classified as abnormal (1); if not,
it is classified as normal (0). Step 4: Synchronization and
Stacking: All three modalities are shortened to the smallest
common length because the of ECG and
PPG/respiration segments may vary. The matching label array
y is then produced by stacking the matched ECG, PPG, and
respiration segments along the channel dimension to build a 3-
D tensor X of shape (num_samples, 1250, 3). Train-Test Split
and Class Balancing Step 5: Train_test split() is used to split
the dataset into training and testing sets. Stratification on labels
is used to maintain the class ratio, and
class_weight.compute class_weight() is used to balance out
the imbalance between normal and abnormal samples. The
CNN-BIiLSTM and gradient boosting models can then be
trained using the cleaned, normalized, windowed, and labeled
data.

amount

4.3 Model Training, Validation, and Evaluation

20% of the training data is set aside for validation in order to
track generalization performance during training, and the
suggested CNN-BiLSTM model is trained using a supervised
learning approach over 20 epochs with a batch size of 32. In
order to avoid overfitting, an EarlyStopping method is used,
which immediately ends training when the validation loss stops
improving and has a patience value of five epochs. Accuracy
and loss curves are recorded by the system during the training
process and are subsequently displayed to
performance consistency between the training and validation
stages. Following training, the model is assessed using test data
that has not yet been seen. It has a strong capacity to detect
abnormalities, achieving a high classification accuracy of
98.95%. To visually compare predicted against actual labels, a
confusion matrix is presented using a Seaborn heatmap, and
performance assessment metrics such as precision, recall, and
Fl-score are provided using classification_report. Together
with the Area Under the Curve (AUC), a ROC curve is also
calculated, demonstrating that even when there is a class
imbalance, the model continues to discriminate between
normal and abnormal physiological segments with high

evaluate

accuracy.
4.4 Libraries and Frameworks used
Table 4.1 presents various software libraries for data

processing, model training, and result visualization. WFDB is
utilized for the acquisition of ECG, PPG, and breathing signals.

TensorFlow/Keras is employed to construct the CNN-BiLSTM
model. Scikit-Learn facilitates data partitioning and
assessment, whilst CatBoost and XGBoost assist in evaluating
machine learning efficacy. Matplotlib and Seaborn generate
visualizations, whereas SHAP elucidates model decisions.
SciPy identifies peaks for the computation of cardiac and
respiratory rates. Collectively, these instruments facilitate
effective data processing, model training, and outcome
analysis.

Table 4.1 Library / Framework

S.No | Library /| Purpose in Project

Framework

1 WFDB Download and read PhysioNet ECG,
(WaveForm | PPG, and Respiration datasets
Database)

2 NumPy Numerical computation,  signal
window segmentation, variance
calculation

3 TensorFlow | Building, training, and evaluating the

/ Keras CNN-BiLSTM deep learning model

4 Scikit-Learn | Train-test splitting, class balancing,
evaluation metrics

5 CatBoost Gradient boosting classification,
feature importance, SHAP
computation

6 XGBoost Ensemble-based anomaly detection
baseline and performance
comparison

7 Matplotlib Plotting of ECG/PPG signals,

confusion matrix, ROC curves

8 Seaborn Heatmap visualization for confusion
(optional) matrix
9 SHAP Model interpretability and feature
impact visualization
10 SciPy Peak detection for computing heart

rate and respiration rate

11 WFDB-DL | Automated dataset download from
API PhysioNet

4.5 Software and Hardware Platform

The project was built utilizing Python in settings such as
Jupyter Notebook or Google Colab. Libraries including
TensorFlow, NumPy, and CatBoost were utilized for deep
learning, data processing, and model assessment. A PC
equipped with an Intel i5 or i7 processor and a minimum of 8
GB RAM is adequate to execute the program. A GPU is not
essential but facilitates expedited model training. A minimum
of 10 GB of storage is necessary for datasets and output files.

NumPy  facilitates = numerical computations,  while
© 2025, JOIREM  |www.joirem.com| Page 6 ISSN (0) 3107-6696
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Table 4.2 Softwares and Hardwares used

1 Operating System Windows  10/11  or
Ubuntu

2 Programming Python 3.8 or above

Language

3 Development Tool Jupyter  Notebook  /
Google Colab / VS Code

4 Libraries Used TensorFlow, NumPy,
SciPy, Matplotlib,
CatBoost, XGBoost,
WFDB

5 Processor Intel Core i5/i7 or
equivalent

6 RAM Minimum 8 GB
(Recommended 16 GB)

7 GPU (Optional) NVIDIA GPU for faster
model training

8 Storage At least 10 GB free space

5 RESULTS AND DISCUSSION

This chapter delineates the performance assessment of the
proposed multimodal patient monitoring system. The hybrid
CNN-BIiLSTM model was trained with synchronized ECG,
PPG, and breathing signals, and its classification performance
was evaluated using multiple standard measures. Comparative
studies were conducted utilizing CatBoost and XGBoost
models to validate the efficacy of the retrieved features.
Performance metrics including accuracy, precision, recall, F1-
score, confusion matrix, and ROC curve are evaluated to
determine system reliability. Furthermore, estimations of heart
rate and breathing rate are provided to confirm physiological
significance. The findings are analyzed for model performance,
advantages, constraints, and consistency with prior research.

5.1 Experimental Setup

All tests in this project utilized publicly accessible ECG, PPG,
and respiration signals from the MIT-BIH Arrhythmia
Database and the BIDMC PPG and Respiration Database. The
signals were initially downloaded via the WFDB library and
subsequently analyzed in Python utilizing Jupyter
Notebook/Google Colab. Each signal was standardized and
partitioned into set 10-second intervals with a 5-second overlap
to generate input segments. The segments were subsequently
amalgamated into a three-channel input (ECG, PPG,
Respiration) and utilized to train the hybrid CNN-BiLSTM
model in TensorFlow/Keras. The dataset was divided into
training and testing sets in an 80:20 ratio, and class weights
were utilized to address label imbalance. Gradient boosting

models, including CatBoost and XGBoost, were trained on
flattened signal characteristics for comparative analysis. The
model's performance was assessed by accuracy, precision,
recall, Fl-score, confusion matrix, and ROC-AUC, with
results shown via Matplotlib and Seaborn.

5.2 Training and Validation Performance

Plots of the CNN-BiLSTM model's learning over training
epochs are displayed. Effective feature learning from ECG,
PPG, and breathing signals is demonstrated by the accuracy,
which rises quickly for both training and validation data and
surpasses 98% by epoch 3. Validation accuracy declines after
epoch 4, indicating overfitting. This is corroborated by the loss
curves, which demonstrate good generalization as validation
loss drops off significantly in the early epochs and stays below
training loss until epoch 4. Nevertheless, after epoch 5, an
increase in validation loss suggests that performance might
deteriorate with additional training. All things considered, the
curves support rapid convergence and support early stopping as
a means of preserving accuracy even when there is a class
imbalance, between physiological segments that are normal

and those that are disordered.
Accuracy Loss

—— Train Loss
e Val Loss

0.95 05

04

03

—— Train Accuracy 02

0.75 Val Accuracy

o 1 2 3 4 5 6 0 1 2 3 4 5 6

Fig-2 Training accuracy and validation accuracy

The graph demonstrates quick learning in the initial epochs,
and by epoch 2, both training and validation accuracy are close
to 100%, suggesting successful feature extraction. Up until
epoch 4, accuracy is constant; after that, early overfitting is
evident as validation accuracy declines but training accuracy
remains high. This demonstrates that halting training early
guarantees higher generalization and that the model performs
at its best during the first few epochs.
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Fig.5.2: Accuracy vs Epochs

0 200 400 600 800 1000 1200

Fig -5 Sample window of ECG,PPG and Resp signals

Confusion Matrix

= 2 An example normal segment with synchronized ECG, PPG,
= and breathing signals is displayed in this plot. The respiration
g oo waveform features regular rhythmic oscillations, the PPG
- 75 signal exhibits smooth pulsatile patterns in sync with
- ° S - s0 heartbeats, and the ECG waveform reveals distinct periodic R-
| s peaks. A normal physiological state is confirmed by the
. . » regularity of all three signals.
o 1
Predicted
Fig -3 Confusion Matrix o e ] s mmmm.m)mm‘
The algorithm successfully identified 185 normal samples and s jm
all three abnormal samples, according to the confusion matrix; L 9 8o
just two normal cases were incorrectly identified as abnormal. -
Every anomalous occurrence was found, hence there are no . .
false negatives. This shows excellent sensitivity for detecting LA B L W . E—— I z

E
Heart Rate Respiratory Rate

abnormalities and great dependability.

5.3Evaluation Metrics Fig -6 Heart and Respiration rate Distribution

ROCCHRS According to the heart rate histogram, aberrant samples look

10 = slightly lower than normal samples, which typically range

o between 65 and 85 BPM. The two classes are easily

> ’,/”’ distinguished by the respiratory rate distribution: aberrant

% 0.6 1 /,/’f samples have abnormally low breathing rates close to zero,

% /,/’/ whereas normal signals cluster around 4055 breaths/min. This

g //,, demonstrates that a powerful sign of abnormalities is

0.2 /,/”’ respiratory suppression.
0.0 ; £33 ‘ I I —I AUC = l.OID P toce
oo oz oa oo o 10

False Positive Rate 7 4 = Train Loss

—— Val Loss

0.6 4

Fig -4 ROC Curve 095 1

054

With an AUC of 1.00, the model performs almost flawlessly, ]

0.3+

according to the ROC curve. When the curve reaches the upper- 0851 ol
left corner, it shows nearly zero false positives and a very high 050 —eieana]|
true positive detection rate. Excellent differentiation between — Mlathiaty 004

normal and pathological samples is confirmed by this. ’ ’ b " ’ ’ " °
Fig -7 Accuracy and Loss
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Strong learning power is demonstrated by the charts, which
show that both training and validation accuracy rapidly surpass
95% and approach 100% after a few epochs. The accuracy
curves exhibit steady generalization and converge smoothly
despite minor changes. The lack of significant overfitting is
confirmed by the loss curves' constant decline for both training
and validation, with validation loss coming in close after
training loss. The model has effectively reduced classification
error while preserving consistent performance across training
and validation data, as evidenced by the loss approaching zero
by the last epochs.

5.4 Comparative Analysis

The performance assessment indicates that the suggested
multimodal system attains exceptional accuracy in classifying
respiratory abnormalities through the utilization of both deep
learning and machine learning models. The hybrid CNN-
BIiLSTM model attained an overall test accuracy of 98.94%,
with precision, recall, and F1-score of 0.99 for the detection of
the normal class. Despite the abnormal class having less data,
the model attained a recall of 0.67, demonstrating its
proficiency in identifying aberrant breathing patterns amongst
class imbalance. XGBoost and CatBoost were trained on the
identical dataset to confirm the retrieved features, achieving
100% accuracy across all measures, hence exhibiting flawless
classification performance for both normal and atypical
instances. The weighted averages for all metrics approached
1.0, indicating robust generalization capability. The results
underscore the efficacy of integrating multimodal signal fusion
with deep learning and boosting methodologies for dependable
abnormality identification.

CNN-BIiLSTM Test Accuracy: 0.9894736842105263
precision recall fl-score support

0 099 099 0.99 187
1 0.67 0.67 0.67 3

accuracy 0.99 190
macro avg 0.83 083 0.83 190
weightedavg 099 099 099 190

XGBoost Accuracy: 1.0
precision recall fl-score support

0 1.00  1.00 1.00 187
1 1.00 1.00 1.00 3

accuracy 1.00 190
macro avg 1.00  1.00 1.00 190

weighted avg 1.00 1.00 1.00 190

CatBoost Accuracy: 1.0
precision recall fl-score support

0 1.00 1.00 1.00 187
1 1.00  1.00 1.00 3

accuracy 1.00 190
macro avg 1.00  1.00 1.00 190
weighted avg 1.00 1.00 1.00 190

3. CONCLUSIONS

With a CNN-BIiLSTM architecture and gradient boosting
models, the suggested multimodal framework effectively
combines ECG, PPG, and respiration signals, reaching over
98% accuracy for anomaly identification while preserving
clinical interpretability through SHAP analysis. The models
and labelling strategy's dependability is demonstrated by
physiological validation, which verifies that aberrant segments
have decreased respiratory activity.

Expanding signal modalities, employing annotations that have
been medically verified, implementing the system on wearable
or edge devices in real-time, and embracing sophisticated
models like Transformers with enhanced explainability are the
main goals of future study. These improvements will facilitate
ongoing remote health monitoring and real-world clinical
deployment.

ACKNOWLEDGEMENT

The authors would like to sincerely thank Francis Xavier
Engineering College in Tirunelveli for providing the
environment, resources, and support needed to complete this
research project.

I would like to express our sincere gratitude to Ms. Agnes
Joshy, Assistant Professor in the Department of Information
Technology, for her unwavering support, insightful advice, and
encouragement We also thank the faculty members of the
Information Technology Department for their encouragement
and helpful criticism. Lastly, we would want to express our
gratitude to our peers and families for their unwavering
support, which was crucial to the accomplishment of this study.

REFERENCES

[1] R. Tao, L. Wang, and Y. Xiong, “IM-ECG: An interpretable
framework for arrhythmia detection using multi-lead ECG,” Expert

© 2025, JOIREM  |www.joirem.com| Page 9

ISSN (0) 3107-6696



sz =\
W =

=
2 N
i A 3

JOIREM "I

=M =

Journal Publication of International Research for Engineering and Management (JOIREM)

Volume: 03 Issue: 11 | Nov-2025
ISSN (0) 3107-6696

Systems with Applications, vol. 237, 121497, 2024, doi:
10.1016/j.eswa.2023.121497.

[2] F. Lin et al., “Artificial-intelligence-based risk prediction and
mechanism discovery for atrial fibrillation using heart beat-to-beat
intervals,” Med, vol. 5, no. 5, pp. 414431, 2024, doi:
10.1016/j.medj.2024.02.006.

[3] A. Ezzat, O. A. Omer, U. S. Mohamed, and A. S. Mubarak, “ECG
signal reconstruction from PPG using a hybrid attention-based deep
learning network,” EURASIP Journal on Advances in Signal
Processing, vol. 2024, article 95, pp. 1-18, 2024, doi: 10.1186/s13634-
024-01158-8.

[4] W. Zeng et al., “Interpretable deep learning framework for multi-
label ECG classification: Enhancing cardiac diagnostics through
feature attention and explainability,” Biomedical Signal Processing
and Control, vol. 112, 108447, 2026 (online 2025), doi:
10.1016/j.bspc.2025.108447.

[5] M. Abououf, S. Singh, R. Mizouni, and H. Otrok, “Explainable Al
for event and anomaly detection and classification in healthcare
monitoring systems,” IEEE Internet of Things Journal, vol. 11, no. 2,
pp. 34463457, Jan. 2024, doi: 10.1109/J10T.2023.3296809.

[6] F. Zhou and L. Chen, “Leadwise clustering multi-branch network
for multi-label ECG classification,” Medical Engineering & Physics,
vol. 130, 104196, 2024, doi: 10.1016/j.medengphy.2024.104196.

[7]1 Q. Zhu, W. Li, X. Wang, Q. Zhang, and Y. Du,“Anomaly detection
in bridge structural health monitoring via 1D-LBP and statistical
feature fusion,”

Structures, vol. 70, 107734, 2024, doi: 10.1016/j.istruc.2024.107734.
[8] F. Lin et al.,“Artificial-intelligence-based risk prediction and
mechanism discovery for atrial fibrillation using heart beat-to-beat
intervals,”’Med, vol. 5, mno. 5, pp. 414431, 2024, doi:
10.1016/j.med;j.2024.02.006.

[9] X. Zhang, H. Wu, T. Chen, and G. Wang, “Automatic diagnosis of
arrhythmia with electrocardiogram using multiple-instance learning:
From rhythm annotation to heartbeat prediction,” Artificial
Intelligence in  Medicine, vol. 132, 102379, 2022, doi:
10.1016/j.artmed.2022.102379.

[10] S. Transue, S. D. Min, and M-H. Choi, “Expiratory flow and
volume estimation through thermal-CO: imaging,” IEEE Transactions
on Biomedical Engineering, vol. 70, no. 7, pp. 2111-2123, 2023,
Doi:10.1109/TBME.2023.3236597.

[11] M. Abououf, S. Singh, R. Mizouni, and H. Otrok,

“Explainable Al for event and anomaly detection and classification in
healthcare monitoring systems,” IEEE Internet of Things Journal, vol.
11, no. 2, Pp- 3446-3457, Jan. 2024, doi:
10.1109/J10T.2023.3296809.

[12] W. Zeng et al., “Interpretable deep learning framework for multi-
label ECG classification: Enhancing cardiac diagnostics through
feature attention and explainability,” Biomedical Signal Processing
and Control, vol. 112, 108447, 2026 (online 2025), doi:
10.1016/j.bspc.2025.108447.

[13] A. Ezzat, O. A. Omer, U. S. Mohamed, and A. S. Mubarak, “ECG
signal reconstruction from PPG using a hybrid attention-based deep
learning network,”

EURASIP Journal on Advances in Signal Processing, vol. 2024,
article 95, pp. 1-18, 2024, doi: 10.1186/s13634-024-01158-8.

© 2025, JOIREM  |www.joirem.com| Page 10

BIOGRAPHIES

During the 2020-2024 academic
year, P. Reshma earned her Bachelor
of  Technology (B.Tech) in
Information  Technology  from
Francis Xavier Engineering College
in Tirunelveli. She continued her
studies at the same university since
she was very interested in cutting-
edge computing research and
technologies.

For the 2024-2026 academic year,
she is presently enrolled in Francis
Xavier  Engineering  College's
Master of Technology (M.Tech) in
Information Technology program.
Consistent performance, a
commitment to learning, and active
involvement in technical tasks are
characteristics of her academic
career. Her registration number is
95072457008.

ISSN (0) 3107-6696



