
Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 1 ISSN (O) 3107-6696

Synchronous V/S Asynchronous FIFO Design

 Dr. Shailaja Mudengudi1
, Komal L Mane2

, Laxmi B Amargol3, Vani S Sarvi4

Department of Electronics and Communication Engineering Visvesvaraya Technological University, Belagavi Gadag,
Karnataka, India

Komalm0851@gmail.com2, laxmiamargol@gmail.com3, vanissarvi@gmail.com4

---***---
Abstract - This project presents the design, implementation,
and comparative analysis of Synchronous FIFO and
Asynchronous FIFO architectures using Verilog HDL and
EDA tools. FIFO (First-In-First-Out) memories are widely
used in digital systems for temporary data storage and reliable
communication between subsystems. However, designing
FIFO architectures that ensure high speed, low power, and
reliable clock-domain crossing remains challenging.

In this work, both FIFO types are designed and analyzed under
identical conditions.
The Synchronous FIFO uses a single clock domain, enabling
simple control logic and high throughput, while the
Asynchronous FIFO uses dual clock domains and Gray code–
based pointer synchronization to avoid metastability.
Functional verification, synthesis, and power analysis are
performed using RTL simulations and synthesis tools. The
results show that synchronous FIFOs achieve higher speed and
simpler design, whereas asynchronous FIFOs provide reliable
data transfer between different clock domains. The final
comparison highlights the trade-offs between complexity,
reliability, speed, and power.

Keywords: Synchronous FIFO, Asynchronous FIFO, Clock
Domain Crossing, Gray Code Pointers, Verilog HDL, RTL
Design, FIFO Architecture, Metastability, VLSI, Digital System
Design.

Introduction

FIFO (First-In-First-Out) memory buffers are essential
building blocks in modern digital systems. They are used in
communication interfaces, processors, SoCs, network devices,
and real-time data streaming applications. Their main purpose
is to temporarily hold data and ensure ordered transmission
from the producer to the consumer.

A Synchronous FIFO operates using a single clock signal. All
write and read operations occur on the same clock edge,
resulting in simple logic, easy timing closure, and predictable
performance. These FIFOs are typically used in systems where
both sender and receiver run at the same frequency.

In contrast, an Asynchronous FIFO is used when the
write and read operations occur in different clock
domains. Because of this clock mismatch, metastability
issues arise. Thus, Gray-coded read and write pointers along
with synchronizer flip-flops are used to ensure reliable
operation.

With increasing SoC complexity and the heavy use of
multiple processing blocks, choosing the correct FIFO
architecture in terms of speed, power, and reliability has
become essential.

This project focuses on:

 Designing both FIFO architectures using
Verilog HDL

 Performing functional verification

 Analyzing timing, area, and power through synthesis

 Comparing both architectures in terms of
efficiency and reliability

This work demonstrates how architectural choices impact
the overall performance of FIFO-based data communication
systems.

II. RELATED WORK

FIFO architecture design has been studied extensively,
especially in areas involving clock domain crossing (CDC)
and low-power memory structures.

Several works highlight reliability issues in asynchronous
FIFOs due to metastability, which must be resolved using
techniques such as pointer synchronization and Gray-code
addressing. Research by Sun et al. emphasized that
asynchronous FIFOs require careful pointer synchronization

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 2 ISSN (O) 3107-6696

using dual-flip-flop synchronizers to avoid incorrect flag
generation.

High-speed synchronous FIFO designs often rely on
pipelining, optimized pointer arithmetic, and reduced control
complexity. Prior works show that synchronous FIFOs
achieve lower latency since both read and write occur on the
same clock.

Studies on low-power FIFO designs focus on minimizing
switching activity, optimizing memory read/write logic, and
reducing unnecessary transitions in pointer generation.

Researchers have also explored dynamic frequency scaling and
gated clock techniques for power reduction.

However, few comparative studies exist where synchronous
and asynchronous FIFOs are analyzed under identical
conditions, including RTL design, synthesis, timing, and power
analysis. This project fills that gap by providing a unified
framework and practical implementation comparison.

III. ARCHITECTURE OVERVIEW

The architecture of a FIFO consists of a memory array, read
pointer, write pointer, and control logic that manages the data
flow. Although both synchronous and asynchronous FIFOs use
the same basic components, their internal operation differs
depending on the clocking method.

A Synchronous FIFO uses a single clock for both read and write
operations. Because of this shared clock, the pointer updates,
memory access, and full/empty flag generation happen in the
same timing domain. The read and write pointers are simple
binary counters, and the comparison between them is
straightforward.

Since no clock domain crossing exists, there is no risk of
metastability, making the design simpler, faster, and easier to
implement.

In contrast, an Asynchronous FIFO is designed for systems
where the write and read sides operate on entirely different
clocks. This difference in clocks introduces timing uncertainty,
so the architecture uses Gray-coded pointers instead of binary,
ensuring that only one bit changes at each increment. These
Gray- coded pointers are safely transferred across clock
domains using synchronizer flip-flops. Once synchronized,
they are compared to generate full and empty conditions.
Although this architecture is more complex due to clock-
domain crossing, it reliably transfers data between unrelated
clock frequencies.

Overall, both FIFO types use the same fundamental structure,
but synchronous FIFO focuses on speed and simplicity, whereas
asynchronous FIFO emphasizes safe and reliable data transfer
between independent clock domains.

IV. METHODOLOGY

The design flow used in this project follows standard RTL
digital design methodology.

4.1. Specification and Design Requirements

The project begins by defining FIFO depth, data width,
expected throughput, and power constraints. These
specifications help determine the size of the memory array
and pointer width. For asynchronous FIFO, the identification
of clock frequencies is essential because the difference in
clock rates dictates synchronization requirements and
affects metastability probability.

During specification, it is also important to define acceptable
latency, maximum operating frequency, and flag behavior.

For example, synchronous FIFOs may operate at very high
clock speeds without requiring additional safety
mechanisms, whereas asynchronous FIFOs must consider
metastability windows and safe synchronization periods.

4.2 RTL Design Using Verilog HDL

Both FIFO types were modeled using Verilog HDL in a
modular, hierarchical manner. The memory module stores
data, while the pointer modules manage addressing. For
synchronous FIFO, pointer arithmetic and full/empty
detection were implemented using simple binary
comparisons. In asynchronous FIFO, additional modules
were developed to convert binary pointers to Gray code and
vice versa. Synchronizer modules, consisting of chains of
flip-flops, were added to safely transfer Gray-coded pointers
across clock domains.

Designing the control unit required careful treatment of
boundary cases such as pointer wrap-around, simultaneous
read/write conditions, and FIFO initialization after reset. The
RTL code was structured to be synthesizable, hardware-
efficient, and easy to debug

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 3 ISSN (O) 3107-6696

4.2.1. RTL Design of Synchronous FIFO

4.2.2 RTL Design of Synchronous FIFO

4.3 Functional Simulation

Simulation was carried out to validate the correctness of FIFO
behavior. For synchronous FIFO, tests included performing fast
consecutive writes, burst reads, and simultaneous operations to
observe pointer transitions. For asynchronous FIFO, simulation
was more complex because the read and write clocks were set to
different frequencies and phases to replicate real-world
asynchronous behavior. The simulation environment tested
metastability scenarios, pointer synchronization timing, and
corner cases such as slow-write fast-read patterns. All expected
read outputs were compared against reference models to ensure
no data corruption, pointer misalignment, or flag generation
errors occurred.

4.3.1. Simulation Result of Synchronous FIFO Design

4.3.1. Simulation Result of Asynchronous FIFO Design

4.4 Synthesis Using Cadence Genus

The RTL descriptions were synthesized using standard-cell
technology to estimate hardware resource utilization,
maximum operating frequency, and power consumption. The
synthesis tool converted HDL code into gate-level netlists, and
timing constraints were applied to achieve the required
performance targets.

Synchronous FIFOs generally showed superior timing results
due to their single-clock nature and minimal control
complexity. Asynchronous FIFOs consumed slightly more
area due to additional synchronizers and Gray code logic

4.5 Final Result - Power of Synchronous FIFO

Power of Asynchronous FIFO

Area of Synchronous FIFO

Journal Publication of International Research for Engineering and Management (JOIREM)
Volume: 03 Issue: 11 | Nov-2025

ISSN (O) 3107-6696

© 2025, JOIREM |www.joirem.com| Page 4 ISSN (O) 3107-6696

Area of Asynchronous FIFO

4.6 Design Iteration and Optimization

If timing constraints were violated or if power consumption
exceeded acceptable limits, modifications were made at the
RTL level. This included optimizing pointer logic, reducing
redundant transitions, and simplifying control circuitry. For
asynchronous FIFOs, synchronizer stages were examined
closely to ensure reliability without excessive delay.

V. REFERENCES

 C. E. Cummings, “Simulation and Synthesis
 Techniques for Asynchronous FIFO
Design with Gray Code Pointer,” Synopsys Users
Group (SNUG), San Jose, 2002.

 K. E. Lochner, “Metastability in Clock Domain
Crossings,” IEEE Design & Test of Computers, vol.
28, no. 5, pp. 36–47, 2011.

 J. Liu and D. Thomas, “Design of a High-
Performance Synchronous FIFO,” IEEE International
Conference on Computer Design (ICCD), pp. 150–
155, 2009.

 Xilinx Inc., “FIFO Generator v13.2—Product Guide,”
Xilinx Documentation, 2018

 K. S. Miskov-Zivanov and D. Marculescu, “Modeling
and Analysis of Uncertainty in Clock Domain Crossing
Circuits,” IEEE Transactions on Computer-Aided
Design, vol. 29, no. 10, pp. 1597–1608, 2010

 A. Singh and M. Singh, “A High-Speed Asynchronous
FIFO for Reliable Data Transfer,” IEEE International
SOC Conference, pp. 225-228-2014.

 J. Sparsø and S. Furber, Principles of Asynchronous
Circuit Design, Springer, 2020

 M. Greenstreet, “Understanding and Avoiding
Metastability in Digital Systems,” IEEE International
Symposium on Asynchronous Circuits and Systems,
pp. 164–175, 2015

 R. Nair, “Clock Domain Crossing: Techniques and
Timing Challenges,” IEEE Microelectronics Journal,
vol. 44, no. 2, pp. 112–123, 2017

 P. Day and G. Woods, “Investigation into FIFO
Architectures for High-Speed Communication
Systems,” IEEE Transactions on Circuits and
Systems, vol. 49, no. 3, pp. 421–432, 2002.

