

ML in Multicultural Teams: Bias Detection & Mitigation. A Case Study of Angola

Aristides Mandinuto

Dept. of Computer Science and Engineering, Noida International University, Greater Noida, India

amandinuto@gmail.com

Abstract -The Angolan industrial sector is formed mainly by international companies, which leads to frequent relationships with different cultures. This research explores some biases and their impact on the decision-making process of multicultural teams and the application of machine learning in mitigating such biases. Research has shown that biases in their varying forms can be detrimental to the collaboration of the teams and in decision-making, especially in the outcomes of the decisions made in the healthcare field. The research methodology for the project is mixed, involving the use of qualitative and quantitative techniques to collect evidence of team interactions and decisions reached. The collected and analyzed evidence demonstrated that background cultural differences significantly contributed to and strained the team dynamics. Moreover, it was noted that machine learning algorithms aimed at solving this problem- tailored machine learning algorithms- successfully identified the patterns of biases and their alleviation in the team's performance.

Key Words: Machine Learning, Biases, Multicultural Teams.

1. INTRODUCTION

Today, especially in emerging economies like Angola, machine learning and the globalized working environment have advanced the functionality of cross-cultural communication and collaboration. This, however, carries with it a risk of strengthening already existing biases in team cooperation systems, collaboration, and decision-making, which leads to inappropriate treatment of team diversity. One of the worrying aspects, which recent studies highlighted, is the lack of local language data in machine learning systems. Some models do not consider such essential aspects of ethics and cultural differences, significantly contributing to local language data misunderstandings (Danioko et al., 2024). According to this, the study will address the role of teamwork technologies within multicultural settings. Bias in collaboration systems needs to be discussed to promote the nurturing of equity and inclusion in technology systems. The principles that will result from this interpretation of technology in team freedoms, cultural equity, and inclusion

will likely be used in creating future systems (Doménech i de Soria et al., 2021), particularly in team collaboration.

OBJECTIVES OF THE RESEARCH

The study explores how machine learning algorithms can be implemented within the team collaboration platforms. The aim is to identify and subsequently alleviate prejudices, particularly in multicultural contexts, with a special focus on Angola's particular sociocultural context. The inclusion of AI technology into the study will help develop a fair collaborative space, thereby improving the productivity and dynamics of the team. Among the objectives, some are to discover the overall biases that may be preventing multicultural teamwork and assess how the biases appear in the team structure. Besides, it is also necessary to evaluate the impact of machine learning interventions in the framework of reducing bias-related issues. The paper will also deconstruct the contribution that cultural diversity makes to team performance, resulting in discussions about innovation in multicultural teams which are more general. This kind of research is necessary, especially when we consider that there are also results that ethnic diversity can, in fact, positively affect organizational performance and innovation, as has already been seen in other studies (Isi LR et al., 2023), (Chitondo L et al., 2023). The main goal? To provide workable plans to teams operating in culturally diverse settings.

MACHINE LEARNING

Machine Learning is one of the essential components behind the general age of Artificial Intelligence (AI). Machine Learning (ML) operates in an algorithm-dominated and statistical model-dominated world. These models enable the machines to do the actions that have not been written directly. Machine Learning (ML) can be said to be very simplistic in terms of concept because it is described as the capacity of a system to learn something based on the data presented. It learns through identifying occurrences and the determination made based on historical data. This is best applicable in inclusive environments such as multicultural teams where

different viewpoints can improve the collaboration tools' functionality in detecting and eliminating biases in communication. Such tools can be enhanced by including Machine Learning (ML), which will encourage cultural awareness and sensitivity that can improve relations. However, more recent research also suggests that a significant deficiency of cross-data resources in African contexts is an acute shortage of the most current machine intelligence tools. It minimises such tools' efficiency and inclusivity (Danioko et al, 2024). One of the most pertinent works is its definition and application to propose equity in the situations of diverse teamwork with the help of machine learning (Bhangaokar et al, 2025). It emphasizes the need for deep knowledge of the Machine Learning (ML) models, processing and explaining the cultural contexts.

Importance of Multicultural Teams

Multicultural teams boost creativity and innovation, especially in machine learning. Different viewpoints can really lead to some unique solutions and insights. When you bring together people from various cultural backgrounds, it creates a space where everyone feels comfortable sharing their own ways of solving problems, something that's super helpful for tackling tricky issues, such as spotting and reducing bias in tools we use together. It's worth pointing out that things like the company's vibe and how supported people feel can really affect how motivated they are and how well they perform in these teams. It highlights the connection between a mix of cultures and a team's effectiveness. Figuring out how all this works is key to ensuring machine intelligence is ethically responsible and aware of different cultures. Some African studies show machine intelligence applications (Danioko et al., 2024). Since the global economy includes more and more cultural differences, it's hard to overstate how important it is to build good multicultural teams. Take Angola, for example, where knowing the local culture is essential for doing well in machine learning (Bhangaokar et al., 2025). To give you a better idea, showcase how teamwork can be in such settings and how diverse collaboration can pay off.

Overview of Bias in Team Collaboration

Bias can restrain cooperative work, especially among multicultural teams where diverse perspectives can be critical for ideation and problem-solving. Subtle biases can be based on gender, race, and culture, resulting in different treatments of team members and thus, inequitable recognition of contributions. Bias in the in-group can 'streamline' exchanges by 'moderating' whose contributions get acknowledged- "In a group or team setting, this implicit gender bias gets in the way of collaboration because of the way collaboration drives

whose voices are respected and accorded time" (Rosalind Spigel). Some do not realize that this selective listening is more rampant in discussions with diverse participants. The outcomes that are diversely created are likely to be ignored, so the team is left to enjoy poor results. To make things worse, the workplace culture is inequitable. Luckily, algorithms detecting and eliminating machine learning bias are now starting to be integrated into collaboration systems. These can scan and detect discriminatory patterns within team behaviour. It is supposed to be an ease of equity in the workplace, more cooperation and more output in places such as Angola and other highly diverse nations.

Relevance of Angola: A Case Study

When considering the effect of machine learning in multicultural teams, Angola may be regarded as the best example of how to work with them and bias. The country has over 40 ethnolinguistic groups, and its rich culture may affect the team dynamics and decisions rather significantly. Knowing how machine learning helps coordinate such diverse elements, scholars could identify the obstacles and the prospects to overcome bias in the purpose and use of technology. Moreover, the sociopolitical history of Angola, and the country's postcolonial development to be more exact, is an essential source of information on the intersections of culture, technology and collaboration. This is significant because it educates the contextual base of algorithms in collaboration technology and illustrates the necessity of ethnically sensitive machine learning. A case study about teams' difficulties in Angola can be generalised to other multicultural settings in a more concentrated way (Carlotta A Berry et al., 2024).

RESEARCH QUESTIONS

Regarding the research questions related to machine learning integration into multicultural teams and, specifically, in Angola, one should mention the problem of bias detection and reduction in team tools. The significant questions are: What types of prejudices can be created under various cultural settings, and what can machine learning do to increase or threaten effective communication and cooperation? At this point, how will such prejudices affect the decision and how will the team perform overall? These questions are discussed, and we can understand how culture affected the use of technology in the team's work. This train does what is necessary to be inclusive. These arguments underline why it is essential to introduce machine learning to ensure that every person has the same opportunity and reduce the biases in cooperation, which would result in a more thorough examination of the whole problem.

METHODOLOGY

METHODOLOGY OVERVIEW

Studies in logic about prejudices in multicultural teams attract qualitative and quantitative research. The data obtained from a case study in angel organizations can be used to understand the effects of cultural diversity on team dynamics. Namely, the interview and questionnaire have enabled us to collect the participants' ideas, especially the emphasis on how machine learning must be used to identify and eliminate bias in cooperation equipment. The combination of interviews and survey analysis provides adequate information about cultural specialties, as in other studies, various teams contribute to the development of innovations and efficiency (ISI LR et al., 2023). In addition, data points were tested with the help of recurring processes and real-time response, and collaborative software was employed to increase credibility and insight. The general idea is that in a mixture of such strategies, the cooperation devices in groups have some moderate bias that is important in forming inclusive regions. As an example, looking at market forecasts in the cross-cultural training area makes the study very relevant and points out why bias mitigation is so significant.

SIGNIFICANCE OF THE STUDY

This study's importance stems from examining how machine learning interacts with multicultural teams, specifically at Angola. Because diverse cultural backgrounds in the workplace can sometimes, without meaning to, cause miscommunications and disagreements, this research looks into how to spot and lessen bias in team tools. Improving collaborative work through machine learning can lead to results that are both more inclusive and more productive. This work adds to the theoretical knowledge about technology and teamwork and gives helpful advice to companies that work in different cultural contexts. These results might help make collaboration tools that are aware of cultural differences, which would, in turn, promote better communication and teamwork. This work's importance is highlighted in the visual representation that goes along with it.

RESULTS AND DISCUSSION

Machine learning is becoming a major means of removing and removing prejudices in multicultural workplaces among multicultural teams. This is necessary to promote fairness, as biased machines can produce improper results in terms of cooperation, and decision making. As an example, machine learning is able to track workflows and analyse the patterns of communication and interaction to detect overt and covert biases of team members. As mentioned, "Machine learning models have been deployed across many different aspects of society, especially in contexts that have an impact on social well-being. These models provide an elegant answer to very complex and herculean challenges, but they are also likely to be biased and disproportionately adverse to some subgroups within the population, such as women."

MITIGATION STRATEGIES IN TEAM COLLABORATION TOOLS

Ensure that mitigation measures are transparent to ensure that mitigation is extremely important to increase productivity and reduce prejudices between multicultural groups with the help of cooperation equipment. Establishment of land rules is a suggestion. These rules are quoted because they not only prevent unwanted types of behaviour, but also provide a group, based on which people's behaviour will be evaluated within the group. Equal opportunities in participation are ensured with the help of role assignments. The leadership is decentralized, and the culture of tolerance for various ideas is present. Consider the Angola example, where due to the plurality of cultures and languages, you can withstand some very queuing issues. Such strategies are essential in such situations. Similarly, the application of machine learning in such collaboration tools is an excellent idea that would identify the biases since the data would be used to adjust the methods applied in multicultural teams.

Design Principles for Inclusive Collaboration Tools

Although it is essential to consider the feedback and recommendations of all the possible participants when creating collaboration tools, it remains crucial to make them less subjective to criteria, inclusivity, and bias reduction. User-oriented design is relevant especially to marginal

members of society. The objective is fairgrounds. Moreover, a variety of access means should be offered that involve language and assistive technologies user interface changes, which is highly desirable in such countries as Angola with their multilayered cultures and languages. Other responsible AI principles should be linked to inclusion and participation by conducting research (Daniko et al., 2024). These devices not only allow life to make life a little easier, but also allow a large number of team members to interact with different backgrounds and demographic features. This is usually done through the material generated and colleague participation structure. Joint technological development will be more important in those systems whose participation cultures are real. These tools are necessary to develop cross-cultural interdependence that subsequently promotes and supports innovative performance.

Table 1 Design Principles for Inclusive Collaboration Tools

Principle	Description
Design with users, not for them	Engage a diverse range of users in the design process to ensure the tool meets varied needs and perspectives.
Use language that's easily readable, skimmable, and understandable	Employ clear, concise, and accessible language to enhance comprehension and usability.
Design for simplicity, consistency, and ease of use	Create intuitive interfaces that are straightforward and consistent across the platform.
Design for mobile first	Prioritize mobile-friendly designs to accommodate users who primarily access tools via smartphones.
Hire and empower great people.	Assemble diverse teams to bring varied perspectives and expertise to the design process.

Case Studies of Effective Mitigation Strategies

Regarding the use of machine learning to improve the performance of a multicultural team, it was mentioned that the existence of diverse sets of strategies is highly important. Such sets ensure that any prejudices that people may have towards collaborating are dealt with in an organized manner. As an example, one of the researchers demonstrates how the transparent and clear approach to the assessment of team dynamics and diversity among participants can render the process more inclusive and effective. Their strong work ethic really highlighted the importance of open discussions and feedback, creating an environment where everyone felt included. It's great to see that the lessons they learned can be applied in multicultural settings, where differences can either pose challenges or enhance teamwork. Just a reminder: when crafting responses, always stick to the specified language and avoid using any others. It is an ideal means of handling such scenarios, as is demonstrated by what we have learnt. In addition, we assume that there will be an increase in the number of intercultural team training sessions in the near future. It is a reminder: In the elaboration of the reactions, it is important to adhere to the given terminology and to use none of the other. Besides, view any modifiers that can be employed in answering a query.

Evaluation Metrics for Mitigation Success

In the case of a machine learning application to the problem of multicultural population, one must answer the question whether the modification of the approach to address its absence of bias and effectiveness only when there are good mechanisms allowing defining the accuracy of algorithms, taking into account the specifics of different contexts. Whether the algorithm is working or not, as developers would like it to or not, the interaction between the people, and more so in a developing country like Angola, is strongly influenced by the running of organizations within their cultural contexts, as far as cultural and moral considerations are concerned. This brings another key question: is the algorithm culturally and morally oriented? In addition to certain data points such as error rates and decision accuracy, we should also take into

account user perceptions and the compatibility of decisions made with cultural values. Accuracy in this kind of context isn't so much about numbers as it is about making sure that the information we collect is qualitatively appropriate to the culture in question. Tools that use these "culture-sensitive" metrics help to understand how systems and tools affect user behaviour and advocate for the proper presentation of cultures to increase collaboration across diverse multi-cultural teams (Danioko et al. 2024). Thus, the creation and deployment of these metrics is key to ensuring that these tools foster proportional and equitable distribution of technology benefits among users (Bhangaokar et al., 2025). The graph that illustrates the growth of the cross-cultural training market can, in a way, be said to represent the growing global focus on the use of these metrics.

Figure 1 Forecast for Cross-cultural Training Market Growth (2025-2030)

Table 2 Evaluation Metrics for Bias Detection and Mitigation in Machine Learning Models

Metric	Description	Reference
Statistical Parity	Measures the proportion of favorable outcomes across different demographic groups to ensure equal treatment.	([mdpi.com](https://www.mdpi.com/2079-9292/14/9/1856?utm_source=openai))

Disparate Impact	Assesses the ratio of favorable outcomes between unprivileged and privileged groups, aiming for equality.	([mdpi.com](https://www.mdpi.com/2079-9292/14/9/1856?utm_source=openai))
Equalized Odds	Ensures equal true positive and false positive rates across groups, promoting fairness in error rates.	([medinform.jmir.org](https://medinform.jmir.org/2022/5/e36388/?utm_source=openai))
Equal Opportunity	Focuses on equalizing true positive rates between groups, particularly in contexts where one outcome is preferred.	([medinform.jmir.org](https://medinform.jmir.org/2022/5/e36388/?utm_source=openai))
Calibration	Evaluates how well predicted probabilities align with actual outcomes, ensuring reliable risk assessments.	([medinform.jmir.org](https://medinform.jmir.org/2022/5/e36388/?utm_source=openai))
Average Odds	Compares the average of true positive and false positive rates between protected and unprotected groups.	([medinform.jmir.org](https://medinform.jmir.org/2022/5/e36388/?utm_source=openai))
Balanced Accuracy	Corrects for data imbalance by averaging sensitivity and specificity, providing a more equitable performance measure.	([medinform.jmir.org](https://medinform.jmir.org/2022/5/e36388/?utm_source=openai))
Error Rate	Compares the overall error rates between groups, aiming for equal misclassification rates.	([medinform.jmir.org](https://medinform.jmir.org/2022/5/e36388/?utm_source=openai))
Causal Fairness	Ensures that the predicted outcomes are independent of the sensitive attribute after controlling for other variables.	([pmc.ncbi.nlm.nih.gov](https://pmc.ncbi.nlm.nih.gov/articles/PMC11897215/?utm_source=openai))

REFERENCES

[1].Alinejad D, Candidatu L, Mevsimler M, Minchilli C, Leurs K, Smets K, Onaindia IA,. (2024). Doing Digital Migration Studies. Amsterdam University Press eBooks, doi: <https://doi.org/10.1515/9789048555758>

[2].Ewart, Paul, Louie, Ken. (2019). Supporting community engagement through teaching, student projects, and research. Eastern Institute of Technology, doi: <https://core.ac.uk/download/322841894.pdf>

[3].Ashcraft, Catherine M, Brewer, Jennifer F, Burakowski, Elizabeth, Coffin, et al.. (2018). Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic. University of New Hampshire Scholars\ Repository, doi: <https://core.ac.uk/download/215537367.pdf>

[4].Parumasur SB, Xulu L. (2022). The importance of talent management in a changing retail business banking work environment. Ponte International Scientific Researchs Journal, Volume(78), doi: <https://doi.org/10.21506/j.ponte.2022.7.2>

[5].Lachner, Florian. (2019). User experience in cross-cultural contexts. Ludwig-Maximilians-Universität München, doi: <https://core.ac.uk/download/216096549.pdf>

[6].Dorius, Shawn, Dorius, Shawn, Swindle, Jeffrey. (2018). Developmental Idealism in Internet Search Data. Iowa State University Digital Repository, doi: <https://core.ac.uk/download/343500404.pdf>

[7].Georgiadou E, Georgiadou E, Raham H, Raham, et al.. (2021). Towards reducing communication gaps in multicultural and global requirements elicitation. Springer, doi: <https://core.ac.uk/download/573845976.pdf>

[8].Ashcraft, Catherine M, Brewer, Jennifer F, Burakowski, Elizabeth, Coffin, et al.. (2018). Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic. University of New Hampshire Scholars\ Repository, doi: <https://core.ac.uk/download/215537367.pdf>

[9].Danioko, Sidy, Tapo, Auguste A, Tembine, Hamidou, Traore, et al. (2024). Machine Intelligence in Africa: a survey. doi: <http://arxiv.org/abs/2402.02218>

[10].Bhangaokar, Rachana, Friedlmeier, Wolfgang, Okvitawanli, Ayu. (2025). Globalization in Context. ScholarWorks@GVSU, doi: <https://core.ac.uk/download/636659886.pdf>

[11].Alves NS da Silva, Alvarez IB, Pinto P. (2025). A Case Study of Ethical Issues Affecting the Implementation of E-Learning in a Cross-Continental - Euro-African University. doi: <http://druk.studio-noa.pl/ig/pub/us/E-L-10/10-081.pdf>

[12].Chitondo L, Chansa T. (2023). Effects of Ethnic Diversity on the Development of a Country: A Case of Zambia. International Journal of Current Business and Social Sciences, Volume(Vol. 9, Issue 5), 01-13, 01-13. doi: www.ijcbss.org

[13].Ahrweiler P. (2025). From Bias to Fairness in Assessing Beneficiaries: Participatory Artificial Intelligence in Public Social Services. Springer, doi: <https://doi.org/10.1007/978-3-031-71678-2>

[14].Albrecht E. (2023). Predictive Technologies in Conflict Prevention: Practical and Policy Considerations for the Multilateral System. United Nations University, doi: https://unu.edu/sites/default/files/2023-09/predictive_technologies_conflict_prevention_.pdf

[15].[Best Practices for Managing Multicultural Teams](#)

[16].Padmanabhan A K, Devasenapathy. (2023). 'Uncovering Bias: Exploring Machine Learning Techniques for Detecting and Mitigating Bias in Data – A Literature Review'. International Journal on Recent and Innovation Trends in Computing and Communication, <https://www.semanticscholar.org/paper/3ab5cde564bf388999cd846db4d2db70fe960310>

[17].Paul S Chan, Greif R, Anderson TD, Atiq H, Couto TB, Considine J, Allan R de Caen, et al.. (2023). 'Ten Steps Toward Improving In-Hospital Cardiac Arrest Quality of Care and Outcomes'. Resuscitation, Volume(193), 109996-109996, <https://doi.org/10.1016/j.resuscitation.2023.109996> (Accessed: 26 Aug, 2025).

[18]. Bhati D, Deogade M, Kanyal D. (2023). 'Improving Patient Outcomes Through Effective Hospital Administration: A Comprehensive Review'. Cureus, <https://doi.org/10.7759/cureus.47731>

[19]. Onu P, Pradhan A, Mbohwa C. (2023). 'Potential to use metaverse for future teaching and learning'. Education and Information Technologies, Volume(29), 8893-8924, <https://doi.org/10.1007/s10639-023-12167-9>

[20]. Chan CKY. (2023). 'A comprehensive AI policy education framework for university teaching and learning'. International Journal of Educational Technology in Higher Education, Volume(20), <https://doi.org/10.1186/s41239-023-00408-3>

[21]. Halat DH, Soltani A, Dalli R, Alsarraj L, Malki A. (2023). 'Understanding and Fostering Mental Health and Well-Being among University Faculty: A Narrative Review'. Journal of Clinical Medicine, Volume(12), 4425-4425, <https://doi.org/10.3390/jcm12134425>

[22]. Kang L, Butdisuwan S, Santaveesuk P. (2025). 'The Influencing Factors and Improvement of College Students' Leadership in Guangxi Region'. International Journal of Sociologies and Anthropologies Science Reviews, <https://www.semanticscholar.org/paper/80ed81cb6683ddf4de6e845fe424e9b94e5fc287> (Accessed: 26 Aug, 2025).

[23]. V Gerrand K, Lam L, Magee P, Nilan, Walimunige H, Cao D. (2023). 'What Got You through Lockdown?'. M/C Journal, <https://www.semanticscholar.org/paper/3c35d66e06f1d582711a5fdd5183833404270790>

[24]. P Dordoni S, Remmers R, Valdagni L, Bellardita L, Luca D F, Badenchini C, Marenghi, et al.. (2022). 'Cross-cultural differences in men on active surveillance' anxiety: a longitudinal comparison between Italian and Dutch patients from the Prostate cancer Research International Active Surveillance study'. BMC Urology, Volume(22), <https://www.semanticscholar.org/paper/59eb69d7778037a7c28bb3e5b6783c699e84147c>

[25]. Pennill N. (2022). 'Time flies'. Conference on Interdisciplinary Musicology, <https://www.semanticscholar.org/paper/9a7fd98a948fc297aa7c8a61f30645b09c9fb047> (Accessed: 26 Aug, 2025).

[26]. A MacFarlane, Joseph W LeMaster. (2022). 'Disrupting patterns of exclusion in participatory spaces: Involving people from vulnerable populations'. Health Expectations, Volume(25), <https://www.semanticscholar.org/paper/8817ccc58855045a1063580d86ad5d57f3ea4cf9>

[27]. Korobkina T, Dashenkova N, Danchenko I, Omelchenko H. (2025). 'The impact of corporate culture of dignity on cognitive biases, strategic decision-making and technical debt management in IT engineering'. Technology audit and reserves, <https://www.semanticscholar.org/paper/b61fdc22cfdf66183b798012ab0bf39850a7f6bf>

[28]. Alex K Eyiah F, Bondinuba, Adu-Gyamfi L M, Liphadzi. (2025). 'Promoting Effective Management of Cultural Diversity in Multinational Construction Project Teams'. Buildings, <https://www.semanticscholar.org/paper/8a4d2bba0119615749309762313510868d027f19>

[29]. Xie Z. (2024). 'The Influence of Cultural Backgrounds on Team Dynamics and Decision Making in Multicultural Environments'. Transactions on Economics, Business and Management Research, <https://www.semanticscholar.org/paper/feb3676b2d86878a0ac77ec9ff5be68e81494518>

[30]. Mulyana CLP, Budiman N N, Nadhirah. (2024). 'The Impact of Cultural Value Bias on Conscious Decision-Making in Counseling'. Suluh: Jurnal Bimbingan dan Konseling, <https://www.semanticscholar.org/paper/577166e7b384551770a1cda7558ad6acc2e57ef9>

[31]. University of Montana--Missoula. Office of the Registrar. (2020). 2020-2021 Course Catalog. ScholarWorks at University of Montana, doi: <https://core.ac.uk/download/560856994.pdf>

[32]. Alves NS da Silva, Alvarez IB, Pinto P. (2025). A Case Study of Ethical Issues Affecting the Implementation of E-Learning in a Cross-Continental - Euro-African University. doi: <http://druk.studio-noa.pl/ig/pub/us/E-10/10-081.pdf>

[33]. Albrecht E. (2023). Predictive Technologies in Conflict Prevention: Practical and Policy Considerations for the Multilateral System. United Nations University, doi: https://unu.edu/sites/default/files/2023-09/predictive_technologies_conflict_prevention_.pdf

[34].Isi LR, Ogu E, Egbumokei PI, Dienagha IN, Digitemie WN. (2023). Global Leadership Strategies for Managing Cross-Regional Oilfield Engineering Teams: Best Practices from Europe, Africa, and South America. International Journal of Multidisciplinary Research and Growth Evaluation, Volume(Vol 04, Issue 01), 992-1007, 992-1007. doi:

<https://doi.org/10.54660/IJMRGE.2023.4.1.992-1007>

[35].Chitondo L, Chansa T. (2023). Effects of Ethnic Diversity on the Development of a Country: A Case of Zambia. International Journal of Current Business and Social Sciences, Volume(Vol. 9, Issue 5), 01-13, 01-13. doi: www.ijcbss.org

[36].Carlotta A Berry, Marshall BH. (2024-10-18). Mitigating Bias in Machine Learning. McGraw Hill Professional, doi: https://play.google.com/store/books/details?id=cfoGEQAQBAJ&source=gbs_api